Acronym | ... |
Name | triangular,tetrahedral duoantiprism |
Circumradius | ... |
Face vector | 24, 132, 248, 174, 36 |
Confer |
|
External links |
This isogonal polyteron is obtained by hemiation of hacube. But because of lower degree of freedom the resulting edge sizes cannot be made all alike.
Incidence matrix according to Dynkin symbol
s6o2o3o4s demi( . . . . . ) | 24 | 6 3 2 | 1 9 18 3 | 3 6 1 12 8 | 3 2 5 ------------------+----+----------+-------------+---------------+------- s . 2 . s | 2 | 72 * * | 0 2 4 0 | 1 2 0 4 2 | 2 1 2 q . . . o4s | 2 | * 36 * | 0 0 4 2 | 0 2 1 2 4 | 1 2 2 q sefa( s6o . . . ) | 2 | * * 24 | 1 3 0 0 | 3 0 0 3 0 | 3 0 1 h ------------------+----+----------+-------------+---------------+------- s6o . . . | 3 | 0 0 3 | 8 * * * | 3 0 0 0 0 | 3 0 0 h3o sefa( s6o 2 . s ) | 3 | 2 0 1 | * 72 * * | 1 0 0 2 0 | 2 0 1 oh&#q sefa( s . 2 o4s ) | 3 | 2 1 0 | * * 144 * | 0 1 0 1 1 | 1 1 1 q3o sefa( . . o3o4s ) | 3 | 0 3 0 | * * * 24 | 0 0 1 0 2 | 0 2 1 q3o ------------------+----+----------+-------------+---------------+------- s6o 2 . s | 6 | 6 0 6 | 2 6 0 0 | 12 * * * * | 2 0 0 ho3oh&#q s . 2 o4s | 4 | 4 2 0 | 0 0 4 0 | * 36 * * * | 1 1 0 q3o3o . . o3o4s | 4 | 0 6 0 | 0 0 0 4 | * * 6 * * | 0 2 0 q3o3o sefa( s6o 2 o4s ) | 4 | 4 1 1 | 0 2 2 0 | * * * 72 * | 1 0 1 qo2oh&#q sefa( s 2 o3o4s ) | 4 | 3 3 0 | 0 0 3 1 | * * * * 48 | 0 1 1 q3o3o ------------------+----+----------+-------------+---------------+------- s6o 2 o4s | 12 | 24 6 12 | 4 24 24 0 | 4 6 0 12 0 | 6 * * q-laced (q-digon,h-triangle)-duoantiprism s 2 o3o4s | 8 | 12 12 0 | 0 0 24 8 | 0 6 2 0 8 | * 6 * q-hex sefa( s6o2o3o4s ) | 5 | 6 3 1 | 0 3 6 1 | 0 0 0 3 2 | * * 24 pen variant ho2oq3oo&#q = verf(hacube) starting figure: x6o o3o4x
© 2004-2025 | top of page |