Acronym ...
Name triangular,tetrahedral duoantiprism
Circumradius ...
Face vector 24, 132, 248, 174, 36
Confer
more general:
s2no2o3o4s  
general polytopal classes:
isogonal  
External
links
polytopewiki

This isogonal polyteron is obtained by hemiation of hacube. But because of lower degree of freedom the resulting edge sizes cannot be made all alike.


Incidence matrix according to Dynkin symbol

s6o2o3o4s

demi( . . . . . ) | 24 |  6  3  2 | 1  9  18  3 |  3  6 1 12  8 | 3 2  5
------------------+----+----------+-------------+---------------+-------
      s . 2 . s   |  2 | 72  *  * | 0  2   4  0 |  1  2 0  4  2 | 2 1  2  q
      . . . o4s   |  2 |  * 36  * | 0  0   4  2 |  0  2 1  2  4 | 1 2  2  q
sefa( s6o . . . ) |  2 |  *  * 24 | 1  3   0  0 |  3  0 0  3  0 | 3 0  1  h
------------------+----+----------+-------------+---------------+-------
      s6o . . .   |  3 |  0  0  3 | 8  *   *  * |  3  0 0  0  0 | 3 0  0  h3o
sefa( s6o 2 . s ) |  3 |  2  0  1 | * 72   *  * |  1  0 0  2  0 | 2 0  1  oh&#q
sefa( s . 2 o4s ) |  3 |  2  1  0 | *  * 144  * |  0  1 0  1  1 | 1 1  1  q3o
sefa( . . o3o4s ) |  3 |  0  3  0 | *  *   * 24 |  0  0 1  0  2 | 0 2  1  q3o
------------------+----+----------+-------------+---------------+-------
      s6o 2 . s   |  6 |  6  0  6 | 2  6   0  0 | 12  * *  *  * | 2 0  0  ho3oh&#q
      s . 2 o4s   |  4 |  4  2  0 | 0  0   4  0 |  * 36 *  *  * | 1 1  0  q3o3o
      . . o3o4s   |  4 |  0  6  0 | 0  0   0  4 |  *  * 6  *  * | 0 2  0  q3o3o
sefa( s6o 2 o4s ) |  4 |  4  1  1 | 0  2   2  0 |  *  * * 72  * | 1 0  1  qo2oh&#q
sefa( s 2 o3o4s ) |  4 |  3  3  0 | 0  0   3  1 |  *  * *  * 48 | 0 1  1  q3o3o
------------------+----+----------+-------------+---------------+-------
      s6o 2 o4s   | 12 | 24  6 12 | 4 24  24  0 |  4  6 0 12  0 | 6 *  *  q-laced (q-digon,h-triangle)-duoantiprism
      s 2 o3o4s   |  8 | 12 12  0 | 0  0  24  8 |  0  6 2  0  8 | * 6  *  q-hex
sefa( s6o2o3o4s ) |  5 |  6  3  1 | 0  3   6  1 |  0  0 0  3  2 | * * 24  pen variant ho2oq3oo&#q = verf(hacube)

starting figure: x6o o3o4x

© 2004-2024
top of page