Acronym ditdap Name digon-triangle duoantiprism,hemiated shiddip ` ©` Circumradius sqrt[A2/2+B2] Confer more general: sns2sms   s2s2sns   general polytopal classes: isogonal Externallinks

These isogonal polychora are obtained by hemiation of some semi-uniform shiddip variant with A-sized squares and B-sized hexagons. But because of lower degree of freedom the three resulting edge sizes A*sqrt(2), B*sqrt(3), sqrt(A2+B2) cannot be made all alike.

Special variants:

• A = B = 1 → edge sizes q : q : h, the "2ap" becomes a regular q-tet, the "disphenoid" becomes a strange q-simplex with a single h-edge (qo2oh&#q), the "3ap" becomes narrowed into ho3oh&#q.
• A = sqrt(2), B = 1 → edge sizes u : h : h, the "disphenoid" becomes a strange h-simplex with a single u-edge (ho2ou&#h), the "3ap" becomes a regular h-oct.
• A = sqrt(3), B = sqrt(2) → edge sizes sqrt(6) : sqrt(5) : sqrt(6), as used for the picture above, the "disphenoid" becomes identical to "2ap".

Incidence matrix according to Dynkin symbol

```s4o2s6o

demi( . . . . ) | 12 | 1  4  2 | 1  6  6 | 2 2  4
----------------+----+---------+---------+-------
s4o . .   |  2 | 6  *  * | 0  4  0 | 2 0  2 q
s 2 s .   |  2 | * 24  * | 0  2  2 | 1 1  2 q
sefa( . . s6o ) |  2 | *  * 12 | 1  0  2 | 0 2  1 h
----------------+----+---------+---------+-------
. . s6o   |  3 | 0  0  3 | 4  *  * | 0 2  0 h3o
sefa( s4o2s . ) |  3 | 1  2  0 | * 24  * | 1 0  1 q3o
sefa( s 2 s6o ) |  3 | 0  2  1 | *  * 24 | 0 1  1 oh&#q
----------------+----+---------+---------+-------
s4o2s .   |  4 | 2  4  0 | 0  4  0 | 6 *  * q3o3o (red)
s 2 s6o   |  6 | 0  6  6 | 2  0  6 | * 4  * ho3oh&#q (blue)
sefa( s4o2s6o ) |  4 | 1  4  1 | 0  2  2 | * * 12 qo2oh&#q (yellow)

starting figure: x4o x6o
```

```s4o2s3s

demi( . . . . )   | 12 |  1  4  2 | 1  6  6 | 2 2  4
------------------+----+----------+---------+-------
s4o . .     |  2 |  6  *  * | 0  4  0 | 2 0  2  A*sqrt(2)
s 2 s .   & |  2 |  * 24  * | 0  2  2 | 1 1  2  sqrt(A2+B2)
sefa( . . s3s )   |  2 |  *  * 12 | 1  0  2 | 0 2  1  B*x(2n)
------------------+----+----------+---------+-------
.   s3s     |  3 |  0  0  3 | 4  *  * | 0 2  0
sefa( s4o2s . ) & |  3 |  1  2  0 | * 24  * | 1 0  1
sefa( s 2 s3s )   |  3 |  0  2  1 | *  * 24 | 0 1  1
------------------+----+----------+---------+-------
s4o2s .   & |  4 |  2  4  0 | 0  4  0 | 6 *  *  2ap (red)
s 2 s3s     |  6 |  0  6  6 | 2  0  6 | * 4  *  3ap (blue)
sefa( s4o2s3s )   |  4 |  1  4  1 | 0  2  2 | * * 12  disphenoid (yellow)

starting figure: x4o x3x
```

```s2s2s3s

demi( . . . . )   | 12 | 1  4  2 |  6  6 1 | 2  4 2
------------------+----+---------+---------+-------
s2s . .     |  2 | 6  *  * |  4  0 0 | 2  2 0  A*q
s 2 s .   & |  2 | * 24  * |  2  2 0 | 1  2 1  sqrt(A2+B2)
sefa( . . s3s )   |  2 | *  * 12 |  0  2 1 | 0  1 2  B*h
------------------+----+---------+---------+-------
sefa( s2s2s . ) & |  3 | 1  2  0 | 24  * * | 1  1 0
sefa( . s2s3s ) & |  3 | 0  2  1 |  * 24 * | 0  1 1
.   s3s     |  3 | 0  0  3 |  *  * 4 | 0  0 2
------------------+----+---------+---------+-------
s2s2s .   & |  4 | 2  4  0 |  4  0 0 | 6  * *  2ap (red)
sefa( s2s2s3s )   |  4 | 1  4  1 |  2  2 0 | * 12 *  disphenoid (yellow)
. s2s3s   & |  6 | 0  6  6 |  0  6 2 | *  * 4  3ap (blue)

starting figure: x x x3x
```