Acronym ...
Name β3β3o4β (?)
Circumradius ...

No uniform realisation is possible.


Incidence matrix according to Dynkin symbol

β3β3o4β

both( . . . .    ) | 192 |   2   2  1   4   2 |   2  1   3   6   3   4 |  1  2  1 1   5
-------------------+-----+--------------------+------------------------+---------------
both( s . . s2*a ) |   2 | 192   *  *   *   * |   0  0   0   2   2   0 |  0  1  1 0   2
both( . s . s2*a ) |   2 |   * 192  *   *   * |   0  0   0   2   0   2 |  0  1  0 1   2
both( . . o4s    ) |   2 |   *   * 96   *   * |   0  0   0   0   2   2 |  0  0  1 1   2
sefa( s3s . .    ) |   2 |   *   *  * 384   * |   1  0   1   1   0   0 |  1  1  0 0   1
sefa( . β3o .    ) |   2 |   *   *  *   * 192 |   0  1   1   0   0   1 |  1  0  0 1   1
-------------------+-----+--------------------+------------------------+---------------
both( s3s . .    )    3 |   0   0  0   3   0 | 128  *   *   *   *   * |  1  1  0 0   0
      . β3o .         3 |   0   0  0   0   3 |   * 64   *   *   *   * |  1  0  0 1   0
sefa( β3β3o .    ) |   3 |   0   0  0   2   1 |   *  * 192   *   *   * |  1  0  0 0   1
sefa( s3s . s2*a ) |   3 |   1   1  0   1   0 |   *  *   * 384   *   * |  0  1  0 0   1
sefa( s . o4s2*a ) |   3 |   2   0  1   0   0 |   *  *   *   * 192   * |  0  0  1 0   1
sefa( . β3o4β    ) |   4 |   0   2  1   0   1 |   *  *   *   *   * 192 |  0  0  0 1   1
-------------------+-----+--------------------+------------------------+---------------
      β3β3o .        12 |   0   0  0  24  12 |   8  4  12   0   0   0 | 16  *  * *   *
both( s3s . s2*a )    6 |   3   3  0   6   0 |   2  0   0   6   0   0 |  * 64  * *   *
both( s . o4s2*a )    4 |   4   0  2   0   0 |   0  0   0   0   4   0 |  *  * 48 *   *
      . β3o4β        24 |   0  24 12   0  24 |   0  8   0   0   0  24 |  *  *  * 8   *
sefa( β3β3o4β    )    5 |   2   2  1   2   1 |   0  0   1   2   1   1 |  *  *  * * 192

starting figure: x3x3o4x

© 2004-2019
top of page