Acronym | rithsithbit |
Name | rhombitrihexagonal-simotrihexagonal duoprismatic tetracomb |
Incidence matrix according to Dynkin symbol
x3o6x s3s6s (N → ∞) . . . demi( . . . ) | 36N | 2 2 1 2 2 | 1 2 2 4 4 1 2 4 4 1 1 3 | 1 2 2 2 4 4 2 2 6 1 2 2 2 2 6 | 1 1 3 2 2 6 1 1 3 --------------------+-----+---------------------+-----------------------------------------------+------------------------------------------------------+---------------------------- x . . demi( . . . ) | 2 | 36N * * * * | 1 1 1 2 2 0 0 0 0 0 0 0 | 1 2 2 1 2 2 1 1 3 0 0 0 0 0 0 | 1 1 3 1 1 3 0 0 0 . . x demi( . . . ) | 2 | * 36N * * * | 0 1 0 0 0 1 1 2 2 0 0 0 | 0 0 0 1 2 2 0 0 0 1 2 2 1 1 3 | 0 0 0 1 1 3 1 1 3 . . . s 2 s | 2 | * * 18N * * | 0 0 2 0 0 0 2 0 0 0 0 2 | 1 0 0 2 0 0 0 0 2 1 0 0 0 0 4 | 0 0 2 0 0 2 0 0 2 . . . sefa( s3s . ) | 2 | * * * 36N * | 0 0 0 2 0 0 0 2 0 1 0 1 | 0 1 0 0 2 0 2 0 2 0 1 0 2 0 2 | 1 0 1 2 0 2 1 0 1 . . . sefa( . s6s ) | 2 | * * * * 36N | 0 0 0 0 2 0 0 0 2 0 1 1 | 0 0 1 0 0 2 0 2 2 0 0 1 0 2 2 | 0 1 1 0 2 2 0 1 1 --------------------+-----+---------------------+-----------------------------------------------+------------------------------------------------------+---------------------------- x3o . demi( . . . ) | 3 | 3 0 0 0 0 | 12N * * * * * * * * * * * | 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 3 0 0 0 0 0 0 x . x demi( . . . ) | 4 | 2 2 0 0 0 | * 18N * * * * * * * * * * | 0 0 0 1 2 2 0 0 0 0 0 0 0 0 0 | 0 0 0 1 1 3 0 0 0 x . . s 2 s | 4 | 2 0 2 0 0 | * * 18N * * * * * * * * * | 1 0 0 1 0 0 0 0 2 0 0 0 0 0 0 | 0 0 2 0 0 2 0 0 0 x . . sefa( s3s . ) | 4 | 2 0 0 2 0 | * * * 36N * * * * * * * * | 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 | 1 0 1 1 0 1 0 0 0 x . . sefa( . s6s ) | 4 | 2 0 0 0 2 | * * * * 36N * * * * * * * | 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 | 0 1 1 0 1 0 0 0 0 . o6x demi( . . . ) | 6 | 0 6 0 0 0 | * * * * * 6N * * * * * * | 0 0 0 0 0 0 0 0 0 1 2 2 0 0 0 | 0 0 0 0 0 0 1 1 3 . . x s 2 s | 4 | 0 2 2 0 0 | * * * * * * 18N * * * * * | 0 0 0 1 0 0 0 0 0 1 0 0 0 0 2 | 0 0 0 0 0 2 0 0 2 . . x sefa( s3s . ) | 4 | 0 2 0 2 0 | * * * * * * * 36N * * * * | 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 | 0 0 0 1 0 1 1 0 1 . . x sefa( . s6s ) | 4 | 0 2 0 0 2 | * * * * * * * * 36N * * * | 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 | 0 0 0 0 1 1 0 1 1 . . . s3s . | 3 | 0 0 0 3 0 | * * * * * * * * * 12N * * | 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 | 1 0 0 2 0 0 1 0 0 . . . . s6s | 6 | 0 0 0 0 6 | * * * * * * * * * * 6N * | 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 | 0 1 0 0 2 0 0 1 0 . . . sefa( s3s6s ) | 3 | 0 0 1 1 1 | * * * * * * * * * * * 36N | 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 | 0 0 1 0 0 2 0 0 1 --------------------+-----+---------------------+-----------------------------------------------+------------------------------------------------------+---------------------------- x3o . s 2 s ♦ 6 | 6 0 3 0 0 | 2 0 3 0 0 0 0 0 0 0 0 0 | 6N * * * * * * * * * * * * * * | 0 0 2 0 0 0 0 0 0 x3o . sefa( s3s . ) ♦ 6 | 6 0 0 3 0 | 2 0 0 3 0 0 0 0 0 0 0 0 | * 12N * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 x3o . sefa( . s6s ) ♦ 6 | 6 0 0 0 3 | 2 0 0 0 3 0 0 0 0 0 0 0 | * * 12N * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 x . x s 2 s ♦ 8 | 4 4 4 0 0 | 0 2 2 0 0 0 2 0 0 0 0 0 | * * * 9N * * * * * * * * * * * | 0 0 0 0 0 2 0 0 0 x . x sefa( s3s . ) ♦ 8 | 4 4 0 4 0 | 0 2 0 2 0 0 0 2 0 0 0 0 | * * * * 18N * * * * * * * * * * | 0 0 0 1 0 1 0 0 0 x . x sefa( . s6s ) ♦ 8 | 4 4 0 0 4 | 0 2 0 0 2 0 0 0 2 0 0 0 | * * * * * 18N * * * * * * * * * | 0 0 0 0 1 1 0 0 0 x . . s3s . ♦ 6 | 3 0 0 6 0 | 0 0 0 3 0 0 0 0 0 2 0 0 | * * * * * * 12N * * * * * * * * | 1 0 0 1 0 0 0 0 0 x . . . s6s ♦ 12 | 6 0 0 0 12 | 0 0 0 0 6 0 0 0 0 0 2 0 | * * * * * * * 6N * * * * * * * | 0 1 0 0 1 0 0 0 0 x . . sefa( s3s6s ) ♦ 6 | 3 0 2 2 2 | 0 0 1 1 1 0 0 0 0 0 0 2 | * * * * * * * * 36N * * * * * * | 0 0 1 0 0 1 0 0 0 . o6x s 2 s ♦ 12 | 0 12 6 0 0 | 0 0 0 0 0 2 6 0 0 0 0 0 | * * * * * * * * * 3N * * * * * | 0 0 0 0 0 0 0 0 2 . o6x sefa( s3s . ) ♦ 12 | 0 12 0 6 0 | 0 0 0 0 0 2 0 6 0 0 0 0 | * * * * * * * * * * 6N * * * * | 0 0 0 0 0 0 1 0 1 . o6x sefa( . s6s ) ♦ 12 | 0 12 0 0 6 | 0 0 0 0 0 2 0 0 6 0 0 0 | * * * * * * * * * * * 6N * * * | 0 0 0 0 0 0 0 1 1 . . x s3s . ♦ 6 | 0 3 0 6 0 | 0 0 0 0 0 0 0 3 0 2 0 0 | * * * * * * * * * * * * 12N * * | 0 0 0 1 0 0 1 0 0 . . x . s6s ♦ 12 | 0 6 0 0 12 | 0 0 0 0 0 0 0 0 6 0 2 0 | * * * * * * * * * * * * * 6N * | 0 0 0 0 1 0 0 1 0 . . x sefa( s3s6s ) ♦ 6 | 0 3 2 2 2 | 0 0 0 0 0 0 1 1 1 0 0 2 | * * * * * * * * * * * * * * 36N | 0 0 0 0 0 1 0 0 1 --------------------+-----+---------------------+-----------------------------------------------+------------------------------------------------------+---------------------------- x3o . s3s . ♦ 9 | 9 0 0 9 0 | 3 0 0 9 0 0 0 0 0 3 0 0 | 0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 | 4N * * * * * * * * x3o . . s6s ♦ 18 | 18 0 0 0 18 | 6 0 0 0 18 0 0 0 0 0 3 0 | 0 0 6 0 0 0 0 3 0 0 0 0 0 0 0 | * 2N * * * * * * * x3o . sefa( s3s6s ) ♦ 9 | 9 0 3 3 3 | 3 0 3 3 3 0 0 0 0 0 0 3 | 1 1 1 0 0 0 0 0 3 0 0 0 0 0 0 | * * 12N * * * * * * x . x s3s . ♦ 12 | 6 6 0 12 0 | 0 3 0 6 0 0 0 6 0 4 0 0 | 0 0 0 0 3 0 2 0 0 0 0 0 2 0 0 | * * * 6N * * * * * x . x . s6s ♦ 24 | 12 12 0 0 24 | 0 6 0 0 12 0 0 0 12 0 4 0 | 0 0 0 0 0 6 0 2 0 0 0 0 0 2 0 | * * * * 3N * * * * x . x sefa( s3s6s ) ♦ 12 | 6 6 4 4 4 | 0 3 2 2 2 0 2 2 2 0 0 4 | 0 0 0 1 1 1 0 0 2 0 0 0 0 0 2 | * * * * * 18N * * * . o6x s3s . ♦ 18 | 0 18 0 18 0 | 0 0 0 0 0 3 0 18 0 6 0 0 | 0 0 0 0 0 0 0 0 0 0 3 0 6 0 0 | * * * * * * 2N * * . o6x . s6s ♦ 36 | 0 36 0 0 36 | 0 0 0 0 0 6 0 0 36 0 6 0 | 0 0 0 0 0 0 0 0 0 0 0 6 0 6 0 | * * * * * * * N * . o6x sefa( s3s6s ) ♦ 18 | 0 18 6 6 6 | 0 0 0 0 0 3 6 6 6 0 0 6 | 0 0 0 0 0 0 0 0 0 1 1 1 0 0 6 | * * * * * * * * 6N
© 2004-2024 | top of page |