Acronym | retratet (alt.: amtratet) |
Name | rectified/ambified tratet |
Circumradius | sqrt(11/6) = 1.354006 |
Face vector | 30, 120, 144, 81, 19 |
Confer |
|
Rectification wrt. a non-regular polytope is meant to be the singular instance of truncations on all vertices at such a depth that the hyperplane intersections on the former edges will coincide (provided such a choice exists). Within the specific case of tratet as a pre-image these intersection points might differ on its 2 edge types. Therefore tratet cannot be rectified (within this stronger sense). Nonetheless the Conway operator of ambification (chosing the former edge centers generally) clearly is applicable. This would result in 2 different edge sizes in the outcome polychoron. That one here is scaled such so that the smaller one becomes unity. Then the longer edge will have size q = sqrt(2).
The non-polar triangles {(t,T,T)} have vertex angles t = arccos(3/4) = 41.409622° resp. T = arccos[1/sqrt(8)] = 69.295189°.
All u = 2 edges, used in the below descriptions, only qualify as pseudo edges wrt. the full polychoron.
Incidence matrix according to Dynkin symbol
uo3ox3oo xo3ou&#zq → height = 0 o.3o.3o. o.3o. | 12 * | 2 6 0 | 1 3 6 6 0 0 | 3 3 2 6 0 | 1 3 2 .o3.o3.o .o3.o | * 18 | 0 4 4 | 0 2 8 2 2 2 | 4 1 4 4 1 | 2 2 2 -------------------+-------+----------+------------------+--------------+------- .. .. .. x. .. | 2 0 | 12 * * | 1 0 0 3 0 0 | 0 3 0 3 0 | 0 3 1 oo3oo3oo oo3oo&#q | 1 1 | * 72 * | 0 1 2 1 0 0 | 2 1 1 2 0 | 1 2 1 .. .x .. .. .. | 0 2 | * * 36 | 0 0 2 0 1 1 | 2 0 2 1 1 | 2 1 1 -------------------+-------+----------+------------------+--------------+------- .. .. .. x.3o. | 3 0 | 3 0 0 | 4 * * * * * | 0 3 0 0 0 | 0 3 0 uo .. .. .. ou&#zq | 2 2 | 0 4 0 | * 18 * * * * | 2 1 0 0 0 | 1 2 0 .. ox .. .. ..&#q | 1 2 | 0 2 1 | * * 72 * * * | 1 0 1 1 0 | 1 1 1 .. .. .. xo ..&#q | 2 1 | 1 2 0 | * * * 36 * * | 0 1 0 2 0 | 0 2 1 .o3.x .. .. .. | 0 3 | 0 0 3 | * * * * 12 * | 2 0 0 0 1 | 2 1 0 .. .x3.o .. .. | 0 3 | 0 0 3 | * * * * * 12 | 0 0 2 0 1 | 2 0 1 -------------------+-------+----------+------------------+--------------+------- uo3ox .. .. ou&#zq ♦ 3 6 | 0 12 6 | 0 3 6 0 2 0 | 12 * * * * | 1 1 0 uo .. .. xo3ou&#zq ♦ 6 3 | 6 12 0 | 2 3 0 6 0 0 | * 6 * * * | 0 2 0 .. ox3oo .. ..&#q ♦ 1 3 | 0 3 3 | 0 0 3 0 0 1 | * * 24 * * | 1 0 1 .. ox .. xo ..&#q ♦ 2 2 | 1 4 1 | 0 0 2 2 0 0 | * * * 36 * | 0 1 1 .o3.x3.o .. .. ♦ 0 6 | 0 0 12 | 0 0 0 0 4 4 | * * * * 3 | 2 0 0 -------------------+-------+----------+------------------+--------------+------- uo3ox3oo .. ou&#zq ♦ 4 12 | 0 24 24 | 0 6 24 0 8 8 | 4 0 8 0 2 | 3 * * uo3ox .. xo3ou&#zq ♦ 9 9 | 9 36 9 | 3 9 18 18 3 0 | 3 3 0 9 0 | * 4 * .. ox3oo xo ..&#q ♦ 2 3 | 1 6 3 | 0 0 6 3 0 1 | 0 0 2 3 0 | * * 12
© 2004-2024 | top of page |