Acronym queto Name quasitruncated octeract Circumradius sqrt[(11-7 sqrt(2))/2] = 0.741790 Inradiuswrt. oca (4 sqrt(2)-7)/4 = -0.335786 Inradiuswrt. quitasa [sqrt(2)-1]/2 = 0.207107 Dihedral angles (at margins) at quotox between quitasa and quitasa:   90° at hop between oca and quitasa:   arccos[1/sqrt(8)] = 69.295189° Confer analogs: quasitruncated hypercube qtCn

As abstract polytope queto is isomorphic to tocto, thereby replacing the octagrams by octagons, resp. quith by tic, resp. quitit by tat, resp. quittin by tan, resp. quotox by tox, resp. quitasa by tasa.

Note that the tets, pens, hixes, hops, and ocas become retrograde here.

Incidence matrix according to Dynkin symbol

```o3o3o3o3o3o3x4/3x

. . . . . . .   . | 2048 |    7    1 |    21    7 |    35   21 |    35   35 |   21  35 |    7  21 |   1  7
------------------+------+-----------+------------+------------+------------+----------+----------+-------
. . . . . . x   . |    2 | 7168    * |     6    1 |    15    6 |    20   15 |   15  20 |    6  15 |   1  6
. . . . . . .   x |    2 |    * 1024 ♦     0    7 |     0   21 |     0   35 |    0  35 |    0  21 |   0  7
------------------+------+-----------+------------+------------+------------+----------+----------+-------
. . . . . o3x   . |    3 |    3    0 | 14336    * |     5    1 |    10    5 |   10  10 |    5  10 |   1  5
. . . . . . x4/3x |    8 |    4    4 |     * 1792 ♦     0    6 |     0   15 |    0  20 |    0  15 |   0  6
------------------+------+-----------+------------+------------+------------+----------+----------+-------
. . . . o3o3x   . ♦    4 |    6    0 |     4    0 | 17920    * |     4    1 |    6   4 |    4   6 |   1  4
. . . . . o3x4/3x ♦   24 |   24   12 |     8    6 |     * 1792 ♦     0    5 |    0  10 |    0  10 |   0  5
------------------+------+-----------+------------+------------+------------+----------+----------+-------
. . . o3o3o3x   . ♦    5 |   10    0 |    10    0 |     5    0 | 14336    * |    3   1 |    3   3 |   1  3
. . . . o3o3x4/3x ♦   64 |   96   32 |    64   24 |    16    8 |     * 1120 ♦    0   4 |    0   6 |   0  4
------------------+------+-----------+------------+------------+------------+----------+----------+-------
. . o3o3o3o3x   . ♦    6 |   15    0 |    20    0 |    15    0 |     6    0 | 7168   * |    2   1 |   1  2
. . . o3o3o3x4/3x ♦  160 |  320   80 |   320   80 |   160   40 |    32   10 |    * 448 |    0   3 |   0  3
------------------+------+-----------+------------+------------+------------+----------+----------+-------
. o3o3o3o3o3x   . ♦    7 |   21    0 |    35    0 |    35    0 |    21    0 |    7   0 | 2048   * |   1  1
. . o3o3o3o3x4/3x ♦  384 |  960  192 |  1280  240 |   960  160 |   384   60 |   64  12 |    * 112 |   0  2
------------------+------+-----------+------------+------------+------------+----------+----------+-------
o3o3o3o3o3o3x   . ♦    8 |   28    0 |    56    0 |    70    0 |    56    0 |   28   0 |    8   0 | 256  *
. o3o3o3o3o3x4/3x ♦  896 | 2688  448 |  4480  672 |  4480  560 |  2688  280 |  896  84 |  128  14 |   * 16
```