Acronym potatit
Name prismatotruncated tesseractic tetracomb,
small tomocubic-diprismatotesseractic tetracomb,
runcitruncated tesseractic tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x4x3o3x4o   (N → ∞)

. . . . . | 96N |   1   2    4 |   2   4   1   4   2   2 |  1   4   2   2   2   2  1 | 2  2  1 1
----------+-----+--------------+-------------------------+---------------------------+----------
x . . . . |   2 | 48N   *    * |   2   4   0   0   0   0 |  1   4   2   2   0   0  0 | 2  2  1 0
. x . . . |   2 |   * 96N    * |   1   0   1   2   0   0 |  1   2   0   0   2   1  0 | 2  1  0 1
. . . x . |   2 |   *   * 192N |   0   1   0   1   1   1 |  0   1   1   1   1   1  1 | 1  1  1 1
----------+-----+--------------+-------------------------+---------------------------+----------
x4x . . . |   8 |   4   4    0 | 24N   *   *   *   *   * |  1   2   0   0   0   0  0 | 2  1  0 0
x . . x . |   4 |   2   0    2 |   * 96N   *   *   *   * |  0   1   1   1   0   0  0 | 1  1  1 0
. x3o . . |   3 |   0   3    0 |   *   * 32N   *   *   * |  1   0   0   0   2   0  0 | 2  0  0 1
. x . x . |   4 |   0   2    2 |   *   *   * 96N   *   * |  0   1   0   0   1   1  0 | 1  1  0 1
. . o3x . |   3 |   0   0    3 |   *   *   *   * 64N   * |  0   0   1   0   1   0  1 | 1  0  1 1
. . . x4o |   4 |   0   0    4 |   *   *   *   *   * 48N |  0   0   0   1   0   1  1 | 0  1  1 1
----------+-----+--------------+-------------------------+---------------------------+----------
x4x3o . .   24 |  12  24    0 |   6   0   8   0   0   0 | 4N   *   *   *   *   *  * | 2  0  0 0
x4x . x .   16 |   8   8    8 |   2   4   0   4   0   0 |  * 24N   *   *   *   *  * | 1  1  0 0
x . o3x .    6 |   3   0    6 |   0   3   0   0   2   0 |  *   * 32N   *   *   *  * | 1  0  1 0
x . . x4o    8 |   4   0    8 |   0   4   0   0   0   2 |  *   *   * 24N   *   *  * | 0  1  1 0
. x3o3x .   12 |   0  12   12 |   0   0   4   6   4   0 |  *   *   *   * 16N   *  * | 1  0  0 1
. x . x4o    8 |   0   4    8 |   0   0   0   4   0   2 |  *   *   *   *   * 24N  * | 0  1  0 1
. . o3x4o   12 |   0   0   24 |   0   0   0   0   8   6 |  *   *   *   *   *   * 8N | 0  0  1 1
----------+-----+--------------+-------------------------+---------------------------+----------
x4x3o3x .  192 |  96 192  192 |  48  96  64  96  64   0 |  8  24  32   0  16   0  0 | N  *  * *
x4x . x4o   32 |  16  16   32 |   4  16   0  16   0   8 |  0   4   0   4   0   4  0 | * 6N  * *
x . o3x4o   24 |  12   0   48 |   0  24   0   0  16  12 |  0   0   8   6   0   0  2 | *  * 4N *
. x3o3x4o   96 |   0  96  192 |   0   0  32  96  64  48 |  0   0   0   0  16  24  8 | *  *  * N

x3o3x *b3x4x   (N → ∞)

. . .    . . | 192N |    2    2    2   1 |   1   2   2   2   1   1   2   2   2 |   1   1   1   2   2   2   1   1  1   2 |  1  1 1   2 1
-------------+------+--------------------+-------------------------------------+----------------------------------------+--------------
x . .    . . |    2 | 192N    *    *   * |   1   1   1   1   0   0   0   0   0 |   1   1   1   1   1   1   0   0  0   0 |  1  1 1   1 0
. . x    . . |    2 |    * 192N    *   * |   0   1   0   0   1   0   1   1   0 |   1   0   0   1   1   0   1   1  0   1 |  1  1 0   1 1
. . .    x . |    2 |    *    * 192N   * |   0   0   1   0   0   1   1   0   1 |   0   1   0   1   0   1   1   0  1   1 |  1  0 1   1 1
. . .    . x |    2 |    *    *    * 96N |   0   0   0   2   0   0   0   2   2 |   0   0   1   0   2   2   0   1  1   2 |  0  1 1   2 1
-------------+------+--------------------+-------------------------------------+----------------------------------------+--------------
x3o .    . . |    3 |    3    0    0   0 | 64N   *   *   *   *   *   *   *   * |   1   1   1   0   0   0   0   0  0   0 |  1  1 1   0 0
x . x    . . |    4 |    2    2    0   0 |   * 96N   *   *   *   *   *   *   * |   1   0   0   1   1   0   0   0  0   0 |  1  1 0   1 0
x . .    x . |    4 |    2    0    2   0 |   *   * 96N   *   *   *   *   *   * |   0   1   0   1   0   1   0   0  0   0 |  1  0 1   1 0
x . .    . x |    4 |    2    0    0   2 |   *   *   * 96N   *   *   *   *   * |   0   0   1   0   1   1   0   0  0   0 |  0  1 1   1 0
. o3x    . . |    3 |    0    3    0   0 |   *   *   *   * 64N   *   *   *   * |   1   0   0   0   0   0   1   1  0   0 |  1  1 0   0 1
. o . *b3x . |    3 |    0    0    3   0 |   *   *   *   *   * 64N   *   *   * |   0   1   0   0   0   0   1   0  1   0 |  1  0 1   0 1
. . x    x . |    4 |    0    2    2   0 |   *   *   *   *   *   * 96N   *   * |   0   0   0   1   0   0   1   0  0   1 |  1  0 0   1 1
. . x    . x |    4 |    0    2    0   2 |   *   *   *   *   *   *   * 96N   * |   0   0   0   0   1   0   0   1  0   1 |  0  1 0   1 1
. . .    x4x |    8 |    0    0    4   4 |   *   *   *   *   *   *   *   * 48N |   0   0   0   0   0   1   0   0  1   1 |  0  0 1   1 1
-------------+------+--------------------+-------------------------------------+----------------------------------------+--------------
x3o3x    . .    12 |   12   12    0   0 |   4   6   0   0   4   0   0   0   0 | 16N   *   *   *   *   *   *   *  *   * |  1  1 0   0 0
x3o . *b3x .    12 |   12    0   12   0 |   4   0   6   0   0   4   0   0   0 |   * 16N   *   *   *   *   *   *  *   * |  1  0 1   0 0
x3o .    . x     6 |    6    0    0   3 |   2   0   0   3   0   0   0   0   0 |   *   * 32N   *   *   *   *   *  *   * |  0  1 1   0 0
x . x    x .     8 |    4    4    4   0 |   0   2   2   0   0   0   2   0   0 |   *   *   * 48N   *   *   *   *  *   * |  1  0 0   1 0
x . x    . x     8 |    4    4    0   4 |   0   2   0   2   0   0   0   2   0 |   *   *   *   * 48N   *   *   *  *   * |  0  1 0   1 0
x . .    x4x    16 |    8    0    8   8 |   0   0   4   4   0   0   0   0   2 |   *   *   *   *   * 24N   *   *  *   * |  0  0 1   1 0
. o3x *b3x .    12 |    0   12   12   0 |   0   0   0   0   4   4   6   0   0 |   *   *   *   *   *   * 16N   *  *   * |  1  0 0   0 1
. o3x    . x     6 |    0    6    0   3 |   0   0   0   0   2   0   0   3   0 |   *   *   *   *   *   *   * 32N  *   * |  0  1 0   0 1
. o . *b3x4x    24 |    0    0   24  12 |   0   0   0   0   0   8   0   0   6 |   *   *   *   *   *   *   *   * 8N   * |  0  0 1   0 1
. . x    x4x    16 |    0    8    8   8 |   0   0   0   0   0   0   4   4   2 |   *   *   *   *   *   *   *   *  * 24N |  0  0 0   1 1
-------------+------+--------------------+-------------------------------------+----------------------------------------+--------------
x3o3x *b3x .    96 |   96   96   96   0 |  32  48  48   0  32  32  48   0   0 |   8   8   0  24   0   0   8   0  0   0 | 2N  * *   * *
x3o3x    . x    24 |   24   24    0  12 |   8  12   0  12   8   0   0  12   0 |   2   0   4   0   6   0   0   4  0   0 |  * 8N *   * *
x3o . *b3x4x   192 |  192    0  192  96 |  64   0  96  96   0  64   0   0  48 |   0  16  32   0   0  24   0   0  8   0 |  *  * N   * *
x . x    x4x    32 |   16   16   16  16 |   0   8   8   8   0   0   8   8   4 |   0   0   0   4   4   2   0   0  0   2 |  *  * * 12N *
. o3x *b3x4x   192 |    0  192  192  96 |   0   0   0   0  64  64  96  96  48 |   0   0   0   0   0   0  16  32  8  24 |  *  * *   * N

© 2004-2025
top of page