Acronym | pithatit |
Name |
prismatotruncated demitesseractic tetracomb, small prismatodemitesseractic tetracomb, stericantic tesseractic tetracomb |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x3x3o *b3o4x (N → ∞) . . . . . | 96N | 1 4 2 | 4 2 2 2 4 1 | 2 2 4 1 1 2 2 | 1 2 2 1 -------------+-----+--------------+-------------------------+----------------------------+---------- x . . . . | 2 | 48N * * | 4 2 0 0 0 0 | 2 2 4 1 0 0 0 | 1 2 2 0 . x . . . | 2 | * 192N * | 1 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . . . x | 2 | * * 96N | 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1 -------------+-----+--------------+-------------------------+----------------------------+---------- x3x . . . | 6 | 3 3 0 | 64N * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . . . x | 4 | 2 0 2 | * 48N * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 . x3o . . | 3 | 0 3 0 | * * 64N * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . *b3o . | 3 | 0 3 0 | * * * 64N * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x | 4 | 0 2 2 | * * * * 96N * | 0 0 1 0 0 1 1 | 0 1 1 1 . . . o4x | 4 | 0 0 4 | * * * * * 24N | 0 0 0 1 0 0 2 | 0 0 2 1 -------------+-----+--------------+-------------------------+----------------------------+---------- x3x3o . . ♦ 12 | 6 12 0 | 4 0 4 0 0 0 | 16N * * * * * * | 1 1 0 0 x3x . *b3o . ♦ 12 | 6 12 0 | 4 0 0 4 0 0 | * 16N * * * * * | 1 0 1 0 x3x . . x ♦ 12 | 6 6 6 | 2 3 0 0 3 0 | * * 32N * * * * | 0 1 1 0 x . . o4x ♦ 8 | 4 0 8 | 0 4 0 0 0 2 | * * * 12N * * * | 0 0 2 0 . x3o *b3o . ♦ 6 | 0 12 0 | 0 0 4 4 0 0 | * * * * 16N * * | 1 0 0 1 . x3o . x ♦ 6 | 0 6 3 | 0 0 2 0 3 0 | * * * * * 32N * | 0 1 0 1 . x . *b3o4x ♦ 24 | 0 24 24 | 0 0 0 8 12 6 | * * * * * * 8N | 0 0 1 1 -------------+-----+--------------+-------------------------+----------------------------+---------- x3x3o *b3o . ♦ 48 | 24 96 0 | 32 0 32 32 0 0 | 8 8 0 0 8 0 0 | 2N * * * x3x3o . x ♦ 24 | 12 24 12 | 8 6 8 0 12 0 | 2 0 4 0 0 4 0 | * 8N * * x3x . *b3o4x ♦ 192 | 96 192 192 | 64 96 0 64 96 48 | 0 16 32 24 0 0 8 | * * N * . x3o *b3o4x ♦ 96 | 0 192 96 | 0 0 64 64 96 24 | 0 0 0 0 16 32 8 | * * * N
s4o3x3o4x (N → ∞) demi( . . . . . ) | 96N | 4 2 1 | 2 2 4 1 2 4 | 1 2 2 2 1 2 4 | 1 1 2 2 ------------------+-----+--------------+-------------------------+----------------------------+---------- demi( . . x . . ) | 2 | 192N * * | 1 1 1 0 0 1 | 1 1 1 1 0 1 1 | 1 1 1 1 demi( . . . . x ) | 2 | * 96N * | 0 0 2 1 1 0 | 0 1 2 0 1 0 2 | 1 0 1 2 s4o . . . | 2 | * * 48N | 0 0 0 0 2 4 | 0 0 0 2 1 2 4 | 0 1 2 2 ------------------+-----+--------------+-------------------------+----------------------------+---------- demi( . o3x . . ) | 3 | 3 0 0 | 64N * * * * * | 1 1 0 1 0 0 0 | 1 1 1 0 demi( . . x3o . ) | 3 | 3 0 0 | * 64N * * * * | 1 0 1 0 0 1 0 | 1 1 0 1 demi( . . x . x ) | 4 | 2 2 0 | * * 96N * * * | 0 1 1 0 0 0 1 | 1 0 1 1 demi( . . . o4x ) | 4 | 0 4 0 | * * * 24N * * | 0 0 2 0 1 0 0 | 1 0 0 2 s4o 2 . x | 4 | 0 2 2 | * * * * 48N * | 0 0 0 0 1 0 2 | 0 0 1 2 sefa( s4o3x . . ) | 6 | 3 0 3 | * * * * * 64N | 0 0 0 1 0 1 1 | 0 1 1 1 ------------------+-----+--------------+-------------------------+----------------------------+---------- demi( . o3x3o . ) ♦ 6 | 12 0 0 | 4 4 0 0 0 0 | 16N * * * * * * | 1 1 0 0 demi( . o3x . x ) ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * 32N * * * * * | 1 0 1 0 demi( . . x3o4x ) ♦ 24 | 24 24 0 | 0 8 12 6 0 0 | * * 8N * * * * | 1 0 0 1 s4o3x . . ♦ 12 | 12 0 6 | 4 0 0 0 0 4 | * * * 16N * * * | 0 1 1 0 s4o 2 o4x ♦ 8 | 0 8 4 | 0 0 0 2 4 0 | * * * * 12N * * | 0 0 0 2 sefa( s4o3x3o . ) ♦ 12 | 12 0 6 | 0 4 0 0 0 4 | * * * * * 16N * | 0 1 0 1 sefa( s4o3x 2 x ) ♦ 12 | 6 6 6 | 0 0 3 0 3 2 | * * * * * * 32N | 0 0 1 1 ------------------+-----+--------------+-------------------------+----------------------------+---------- demi( . o3x3o4x ) ♦ 96 | 192 96 0 | 64 64 96 24 0 0 | 16 32 8 0 0 0 0 | N * * * s4o3x3o . ♦ 48 | 96 0 24 | 32 32 0 0 0 32 | 8 0 0 8 0 8 0 | * 2N * * s4o3x 2 x ♦ 24 | 24 12 12 | 8 0 12 0 6 8 | 0 4 0 2 0 0 4 | * * 8N * sefa( s4o3x3o4x ) ♦ 192 | 192 192 96 | 0 64 96 48 96 64 | 0 0 8 0 24 16 32 | * * * N starting figure: x4o3x3o4x
© 2004-2024 | top of page |