Acronym pithatit Name prismatotruncated demitesseractic tetracomb,small prismatodemitesseractic tetracomb,stericantic tesseractic tetracomb Confer general polytopal classes: partial Stott expansions

Incidence matrix according to Dynkin symbol

```x3x3o *b3o4x   (N → ∞)

. . .    . . | 96N |   1    4   2 |   4   2   2   2   4   1 |   2   2   4   1   1   2  2 |  1  2 2 1
-------------+-----+--------------+-------------------------+----------------------------+----------
x . .    . . |   2 | 48N    *   * |   4   2   0   0   0   0 |   2   2   4   1   0   0  0 |  1  2 2 0
. x .    . . |   2 |   * 192N   * |   1   0   1   1   1   0 |   1   1   1   0   1   1  1 |  1  1 1 1
. . .    . x |   2 |   *    * 96N |   0   1   0   0   2   1 |   0   0   2   1   0   1  2 |  0  1 2 1
-------------+-----+--------------+-------------------------+----------------------------+----------
x3x .    . . |   6 |   3    3   0 | 64N   *   *   *   *   * |   1   1   1   0   0   0  0 |  1  1 1 0
x . .    . x |   4 |   2    0   2 |   * 48N   *   *   *   * |   0   0   2   1   0   0  0 |  0  1 2 0
. x3o    . . |   3 |   0    3   0 |   *   * 64N   *   *   * |   1   0   0   0   1   1  0 |  1  1 0 1
. x . *b3o . |   3 |   0    3   0 |   *   *   * 64N   *   * |   0   1   0   0   1   0  1 |  1  0 1 1
. x .    . x |   4 |   0    2   2 |   *   *   *   * 96N   * |   0   0   1   0   0   1  1 |  0  1 1 1
. . .    o4x |   4 |   0    0   4 |   *   *   *   *   * 24N |   0   0   0   1   0   0  2 |  0  0 2 1
-------------+-----+--------------+-------------------------+----------------------------+----------
x3x3o    . . ♦  12 |   6   12   0 |   4   0   4   0   0   0 | 16N   *   *   *   *   *  * |  1  1 0 0
x3x . *b3o . ♦  12 |   6   12   0 |   4   0   0   4   0   0 |   * 16N   *   *   *   *  * |  1  0 1 0
x3x .    . x ♦  12 |   6    6   6 |   2   3   0   0   3   0 |   *   * 32N   *   *   *  * |  0  1 1 0
x . .    o4x ♦   8 |   4    0   8 |   0   4   0   0   0   2 |   *   *   * 12N   *   *  * |  0  0 2 0
. x3o *b3o . ♦   6 |   0   12   0 |   0   0   4   4   0   0 |   *   *   *   * 16N   *  * |  1  0 0 1
. x3o    . x ♦   6 |   0    6   3 |   0   0   2   0   3   0 |   *   *   *   *   * 32N  * |  0  1 0 1
. x . *b3o4x ♦  24 |   0   24  24 |   0   0   0   8  12   6 |   *   *   *   *   *   * 8N |  0  0 1 1
-------------+-----+--------------+-------------------------+----------------------------+----------
x3x3o *b3o . ♦  48 |  24   96   0 |  32   0  32  32   0   0 |   8   8   0   0   8   0  0 | 2N  * * *
x3x3o    . x ♦  24 |  12   24  12 |   8   6   8   0  12   0 |   2   0   4   0   0   4  0 |  * 8N * *
x3x . *b3o4x ♦ 192 |  96  192 192 |  64  96   0  64  96  48 |   0  16  32  24   0   0  8 |  *  * N *
. x3o *b3o4x ♦  96 |   0  192  96 |   0   0  64  64  96  24 |   0   0   0   0  16  32  8 |  *  * * N
```

```s4o3x3o4x   (N → ∞)

demi( . . . . . ) | 96N |    4   2   1 |   2   2   4   1   2   4 |   1   2  2   2   1   2   4 | 1  1  2 2
------------------+-----+--------------+-------------------------+----------------------------+----------
demi( . . x . . ) |   2 | 192N   *   * |   1   1   1   0   0   1 |   1   1  1   1   0   1   1 | 1  1  1 1
demi( . . . . x ) |   2 |    * 96N   * |   0   0   2   1   1   0 |   0   1  2   0   1   0   2 | 1  0  1 2
s4o . . .   |   2 |    *   * 48N |   0   0   0   0   2   4 |   0   0  0   2   1   2   4 | 0  1  2 2
------------------+-----+--------------+-------------------------+----------------------------+----------
demi( . o3x . . ) |   3 |    3   0   0 | 64N   *   *   *   *   * |   1   1  0   1   0   0   0 | 1  1  1 0
demi( . . x3o . ) |   3 |    3   0   0 |   * 64N   *   *   *   * |   1   0  1   0   0   1   0 | 1  1  0 1
demi( . . x . x ) |   4 |    2   2   0 |   *   * 96N   *   *   * |   0   1  1   0   0   0   1 | 1  0  1 1
demi( . . . o4x ) |   4 |    0   4   0 |   *   *   * 24N   *   * |   0   0  2   0   1   0   0 | 1  0  0 2
s4o 2 . x   |   4 |    0   2   2 |   *   *   *   * 48N   * |   0   0  0   0   1   0   2 | 0  0  1 2
sefa( s4o3x . . ) |   6 |    3   0   3 |   *   *   *   *   * 64N |   0   0  0   1   0   1   1 | 0  1  1 1
------------------+-----+--------------+-------------------------+----------------------------+----------
demi( . o3x3o . ) ♦   6 |   12   0   0 |   4   4   0   0   0   0 | 16N   *  *   *   *   *   * | 1  1  0 0
demi( . o3x . x ) ♦   6 |    6   3   0 |   2   0   3   0   0   0 |   * 32N  *   *   *   *   * | 1  0  1 0
demi( . . x3o4x ) ♦  24 |   24  24   0 |   0   8  12   6   0   0 |   *   * 8N   *   *   *   * | 1  0  0 1
s4o3x . .   ♦  12 |   12   0   6 |   4   0   0   0   0   4 |   *   *  * 16N   *   *   * | 0  1  1 0
s4o 2 o4x   ♦   8 |    0   8   4 |   0   0   0   2   4   0 |   *   *  *   * 12N   *   * | 0  0  0 2
sefa( s4o3x3o . ) ♦  12 |   12   0   6 |   0   4   0   0   0   4 |   *   *  *   *   * 16N   * | 0  1  0 1
sefa( s4o3x 2 x ) ♦  12 |    6   6   6 |   0   0   3   0   3   2 |   *   *  *   *   *   * 32N | 0  0  1 1
------------------+-----+--------------+-------------------------+----------------------------+----------
demi( . o3x3o4x ) ♦  96 |  192  96   0 |  64  64  96  24   0   0 |  16  32  8   0   0   0   0 | N  *  * *
s4o3x3o .   ♦  48 |   96   0  24 |  32  32   0   0   0  32 |   8   0  0   8   0   8   0 | * 2N  * *
s4o3x 2 x   ♦  24 |   24  12  12 |   8   0  12   0   6   8 |   0   4  0   2   0   0   4 | *  * 8N *
sefa( s4o3x3o4x ) ♦ 192 |  192 192  96 |   0  64  96  48  96  64 |   0   0  8   0  24  16  32 | *  *  * N

starting figure: x4o3x3o4x
```