Acronym gacotat (old: otatit)
Name great cellated tesseractic tetracomb,
omnitruncated tesseractic tetracomb
External
links
wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x4x3x3x4x   (N → ∞)

. . . . . | 384N |    1    1    1    1    1 |   1   1   1   1   1   1   1   1   1   1 |  1   1   1   1   1   1   1   1   1  1 | 1  1  1  1 1
----------+------+--------------------------+-----------------------------------------+---------------------------------------+-------------
x . . . . |    2 | 192N    *    *    *    * |   1   1   1   1   0   0   0   0   0   0 |  1   1   1   1   1   1   0   0   0  0 | 1  1  1  1 0
. x . . . |    2 |    * 192N    *    *    * |   1   0   0   0   1   1   1   0   0   0 |  1   1   1   0   0   0   1   1   1  0 | 1  1  1  0 1
. . x . . |    2 |    *    * 192N    *    * |   0   1   0   0   1   0   0   1   1   0 |  1   0   0   1   1   0   1   1   0  1 | 1  1  0  1 1
. . . x . |    2 |    *    *    * 192N    * |   0   0   1   0   0   1   0   1   0   1 |  0   1   0   1   0   1   1   0   1  1 | 1  0  1  1 1
. . . . x |    2 |    *    *    *    * 192N |   0   0   0   1   0   0   1   0   1   1 |  0   0   1   0   1   1   0   1   1  1 | 0  1  1  1 1
----------+------+--------------------------+-----------------------------------------+---------------------------------------+-------------
x4x . . . |    8 |    4    4    0    0    0 | 48N   *   *   *   *   *   *   *   *   * |  1   1   1   0   0   0   0   0   0  0 | 1  1  1  0 0
x . x . . |    4 |    2    0    2    0    0 |   * 96N   *   *   *   *   *   *   *   * |  1   0   0   1   1   0   0   0   0  0 | 1  1  0  1 0
x . . x . |    4 |    2    0    0    2    0 |   *   * 96N   *   *   *   *   *   *   * |  0   1   0   1   0   1   0   0   0  0 | 1  0  1  1 0
x . . . x |    4 |    2    0    0    0    2 |   *   *   * 96N   *   *   *   *   *   * |  0   0   1   0   1   1   0   0   0  0 | 0  1  1  1 0
. x3x . . |    6 |    0    3    3    0    0 |   *   *   *   * 64N   *   *   *   *   * |  1   0   0   0   0   0   1   1   0  0 | 1  1  0  0 1
. x . x . |    4 |    0    2    0    2    0 |   *   *   *   *   * 96N   *   *   *   * |  0   1   0   0   0   0   1   0   1  0 | 1  0  1  0 1
. x . . x |    4 |    0    2    0    0    2 |   *   *   *   *   *   * 96N   *   *   * |  0   0   1   0   0   0   0   1   1  0 | 0  1  1  0 1
. . x3x . |    6 |    0    0    3    3    0 |   *   *   *   *   *   *   * 64N   *   * |  0   0   0   1   0   0   1   0   0  1 | 1  0  0  1 1
. . x . x |    4 |    0    0    2    0    2 |   *   *   *   *   *   *   *   * 96N   * |  0   0   0   0   1   0   0   1   0  1 | 0  1  0  1 1
. . . x4x |    8 |    0    0    0    4    4 |   *   *   *   *   *   *   *   *   * 48N |  0   0   0   0   0   1   0   0   1  1 | 0  0  1  1 1
----------+------+--------------------------+-----------------------------------------+---------------------------------------+-------------
x4x3x . .    48 |   24   24   24    0    0 |   6  12   0   0   8   0   0   0   0   0 | 8N   *   *   *   *   *   *   *   *  * | 1  1  0  0 0
x4x . x .    16 |    8    8    0    8    0 |   2   0   4   0   0   4   0   0   0   0 |  * 24N   *   *   *   *   *   *   *  * | 1  0  1  0 0
x4x . . x    16 |    8    8    0    0    8 |   2   0   0   4   0   0   4   0   0   0 |  *   * 24N   *   *   *   *   *   *  * | 0  1  1  0 0
x . x3x .    12 |    6    0    6    6    0 |   0   3   3   0   0   0   0   2   0   0 |  *   *   * 32N   *   *   *   *   *  * | 1  0  0  1 0
x . x . x     8 |    4    0    4    0    4 |   0   2   0   2   0   0   0   0   2   0 |  *   *   *   * 48N   *   *   *   *  * | 0  1  0  1 0
x . . x4x    16 |    8    0    0    8    8 |   0   0   4   4   0   0   0   0   0   2 |  *   *   *   *   * 24N   *   *   *  * | 0  0  1  1 0
. x3x3x .    24 |    0   12   12   12    0 |   0   0   0   0   4   6   0   4   0   0 |  *   *   *   *   *   * 16N   *   *  * | 1  0  0  0 1
. x3x . x    12 |    0    6    6    0    6 |   0   0   0   0   2   0   3   0   3   0 |  *   *   *   *   *   *   * 32N   *  * | 0  1  0  0 1
. x . x4x    16 |    0    8    0    8    8 |   0   0   0   0   0   4   4   0   0   2 |  *   *   *   *   *   *   *   * 24N  * | 0  0  1  0 1
. . x3x4x    48 |    0    0   24   24   24 |   0   0   0   0   0   0   0   8  12   6 |  *   *   *   *   *   *   *   *   * 8N | 0  0  0  1 1
----------+------+--------------------------+-----------------------------------------+---------------------------------------+-------------
x4x3x3x .   384 |  192  192  192  192    0 |  48  96  96   0  64  96   0  64   0   0 |  8  24   0  32   0   0  16   0   0  0 | N  *  *  * *
x4x3x . x    96 |   48   48   48    0   48 |  12  24   0  24  16   0  24   0  24   0 |  2   0   6   0  12   0   0   8   0  0 | * 4N  *  * *
x4x . x4x    64 |   32   32    0   32   32 |   8   0  16  16   0  16  16   0   0   8 |  0   4   4   0   0   4   0   0   4  0 | *  * 6N  * *
x . x3x4x    96 |   48    0   48   48   48 |   0  24  24  24   0   0   0  16  24  12 |  0   0   0   8  12   6   0   0   0  2 | *  *  * 4N *
. x3x3x4x   384 |    0  192  192  192  192 |   0   0   0   0  64  96  96  64  96  48 |  0   0   0   0   0   0  16  32  24  8 | *  *  *  * N
or
. . . . .    | 192N |    2    2   1 |   2   2   2   1   2   1 |  2   2   2   2   1  1 | 2  2  1
-------------+------+---------------+-------------------------+-----------------------+--------
x . . . .  & |    2 | 192N    *   * |   1   1   1   1   0   0 |  1   1   2   1   1  0 | 1  2  1
. x . . .  & |    2 |    * 192N   * |   1   0   1   0   1   1 |  1   2   1   1   0  1 | 2  1  1
. . x . .    |    2 |    *    * 96N |   0   2   0   0   2   0 |  2   0   0   2   1  1 | 2  2  0
-------------+------+---------------+-------------------------+-----------------------+--------
x4x . . .  & |    8 |    4    4   0 | 48N   *   *   *   *   * |  1   1   1   0   0  0 | 1  1  1
x . x . .  & |    4 |    2    0   2 |   * 96N   *   *   *   * |  1   0   0   1   1  0 | 1  2  0
x . . x .  & |    4 |    2    2   0 |   *   * 96N   *   *   * |  0   1   1   1   0  0 | 1  1  1
x . . . x    |    4 |    4    0   0 |   *   *   * 48N   *   * |  0   0   2   0   1  0 | 0  2  1
. x3x . .  & |    6 |    0    3   3 |   *   *   *   * 64N   * |  1   0   0   1   0  1 | 2  1  0
. x . x .    |    4 |    0    4   0 |   *   *   *   *   * 48N |  0   2   0   0   0  1 | 2  0  1
-------------+------+---------------+-------------------------+-----------------------+--------
x4x3x . .  &    48 |   24   24  24 |   6  12   0   0   8   0 | 8N   *   *   *   *  * | 1  1  0
x4x . x .  &    16 |    8   16   0 |   2   0   4   0   0   4 |  * 24N   *   *   *  * | 1  0  1
x4x . . x  &    16 |   16    8   0 |   2   0   4   4   0   0 |  *   * 24N   *   *  * | 0  1  1
x . x3x .  &    12 |    6    6   6 |   0   3   3   0   2   0 |  *   *   * 32N   *  * | 1  1  0
x . x . x        8 |    8    0   4 |   0   4   0   2   0   0 |  *   *   *   * 24N  * | 0  2  0
. x3x3x .       24 |    0   24  12 |   0   0   0   0   8   6 |  *   *   *   *   * 8N | 2  0  0
-------------+------+---------------+-------------------------+-----------------------+--------
x4x3x3x .  &   384 |  192  384 192 |  48  96  96   0 128  96 |  8  24   0  32   0 16 | N  *  *
x4x3x . x  &    96 |   96   48  48 |  12  48  24  24  16   0 |  2   0   6   8  12  0 | * 4N  *
x4x . x4x       64 |   64   64   0 |  16   0  32  16   0  16 |  0   8   8   0   0  0 | *  * 3N

© 2004-2024
top of page