Acronym hau ticcup Name hexa-(ortho-)augmented ticcup Dihedral angles at {4} between squippy and A-trip: arccos(-[1+sqrt(2)]/sqrt(6)) = 170.264390° at {4} between B-trip and B-trip:   arccos[-sqrt(8)/3] = 160.528779° at {3} between squippy and B-trip:   150° at {8} between squacu and tic: 135° at {4} between squacu and B-trip:   arccos(-1/sqrt(3)) = 125.264390° at {3} between squacu and squippy:   120° at {4} between squacu and squacu:   90° at {3} between tic and A-trip: 90° Confer blend-component: ticcup   squipuf   related CRFs: dapabdi spic   general polytopal classes: bistratic lace towers

For this polychoron the augmentations of the ops of ticcup by squipufs is to be done in this orientation ("ortho") that the trips of squipuf pairwise adjoin to each other back to back. – There is a different orientation of the squipufs as well ("gyro"), using then the squippies to adjoin pairwise back to back. This then would result in dapabdi spic.

Incidence matrix according to Dynkin symbol

oa3xo4xx xo&#zx   → height = 0, where a = w/q = 1.707107
(tegum sum of ticcup and (a,x)-sirco

o.3o.4o. o.    | 48  * |  2  1  1  2  0 |  1  2  2  1  2  2  2 0 | 1 1  2  2  2
.o3.o4.o .o    |  * 24 |  0  0  0  4  2 |  0  0  0  0  2  4  2 1 | 0 0  2  1  2
---------------+-------+----------------+------------------------+-------------
.. x. .. ..    |  2  0 | 48  *  *  *  * |  1  1  1  0  1  0  0 0 | 1 1  1  1  0
.. .. x. ..    |  2  0 |  * 24  *  *  * |  0  2  0  1  0  2  0 0 | 1 0  2  0  2
.. .. .. x.    |  2  0 |  *  * 24  *  * |  0  0  2  1  0  0  2 0 | 0 1  0  2  2
oo3oo4oo oo&#x |  1  1 |  *  *  * 96  * |  0  0  0  0  1  1  1 0 | 0 0  1  1  1
.. .. .x ..    |  0  2 |  *  *  *  * 24 |  0  0  0  0  0  2  0 1 | 0 0  2  0  1
---------------+-------+----------------+------------------------+-------------
o.3x. .. ..    |  3  0 |  3  0  0  0  0 | 16  *  *  *  *  *  * * | 1 1  0  0  0
.. x.4x. ..    |  8  0 |  4  4  0  0  0 |  * 12  *  *  *  *  * * | 1 0  1  0  0
.. x. .. x.    |  4  0 |  2  0  2  0  0 |  *  * 24  *  *  *  * * | 0 1  0  1  0
.. .. x. x.    |  4  0 |  0  2  2  0  0 |  *  *  * 12  *  *  * * | 0 0  0  0  2
.. xo .. ..&#x |  2  1 |  1  0  0  2  0 |  *  *  *  * 48  *  * * | 0 0  1  1  0
.. .. xx ..&#x |  2  2 |  0  1  0  2  1 |  *  *  *  *  * 48  * * | 0 0  1  0  1
.. .. .. xo&#x |  2  1 |  0  0  1  2  0 |  *  *  *  *  *  * 48 * | 0 0  0  1  1
.. .o4.x ..    |  0  4 |  0  0  0  0  4 |  *  *  *  *  *  *  * 6 | 0 0  2  0  0
---------------+-------+----------------+------------------------+-------------
o.3x.4x. ..     24  0 | 24 12  0  0  0 |  8  6  0  0  0  0  0 0 | 2 *  *  *  *
o.3x. .. x.      6  0 |  6  0  3  0  0 |  2  0  3  0  0  0  0 0 | * 8  *  *  *  (type A)
.. xo4xx ..&#x   8  4 |  4  4  0  8  4 |  0  1  0  0  4  4  0 1 | * * 12  *  *
.. xo .. xo&#x   4  1 |  2  0  2  4  0 |  0  0  1  0  2  0  2 0 | * *  * 24  *
.. .. xx xo&#x   4  2 |  0  2  2  4  1 |  0  0  0  1  0  2  2 0 | * *  *  * 24  (type B)

 © 2004-2021 top of page