Acronym hau ticcup
Name hexa-(ortho-)augmented ticcup
Dihedral angles
  • at {4} between squippy and A-trip: arccos(-[1+sqrt(2)]/sqrt(6)) = 170.264390°
  • at {4} between B-trip and B-trip:   arccos[-sqrt(8)/3] = 160.528779°
  • at {3} between squippy and B-trip:   150°
  • at {8} between squacu and tic: 135°
  • at {4} between squacu and B-trip:   arccos(-1/sqrt(3)) = 125.264390°
  • at {3} between squacu and squippy:   120°
  • at {4} between squacu and squacu:   90°
  • at {3} between tic and A-trip: 90°
Confer
blend-component:
ticcup   squipuf  
related CRFs:
dapabdi spic  
general polytopal classes:
bistratic lace towers  

For this polychoron the augmentations of the ops of ticcup by squipufs is to be done in this orientation ("ortho") that the trips of squipuf pairwise adjoin to each other back to back. – There is a different orientation of the squipufs as well ("gyro"), using then the squippies to adjoin pairwise back to back. This then would result in dapabdi spic.


Incidence matrix according to Dynkin symbol

oa3xo4xx xo&#zx   → height = 0, where a = w/q = 1.707107
(tegum sum of ticcup and (a,x)-sirco

o.3o.4o. o.    | 48  * |  2  1  1  2  0 |  1  2  2  1  2  2  2 0 | 1 1  2  2  2
.o3.o4.o .o    |  * 24 |  0  0  0  4  2 |  0  0  0  0  2  4  2 1 | 0 0  2  1  2
---------------+-------+----------------+------------------------+-------------
.. x. .. ..    |  2  0 | 48  *  *  *  * |  1  1  1  0  1  0  0 0 | 1 1  1  1  0
.. .. x. ..    |  2  0 |  * 24  *  *  * |  0  2  0  1  0  2  0 0 | 1 0  2  0  2
.. .. .. x.    |  2  0 |  *  * 24  *  * |  0  0  2  1  0  0  2 0 | 0 1  0  2  2
oo3oo4oo oo&#x |  1  1 |  *  *  * 96  * |  0  0  0  0  1  1  1 0 | 0 0  1  1  1
.. .. .x ..    |  0  2 |  *  *  *  * 24 |  0  0  0  0  0  2  0 1 | 0 0  2  0  1
---------------+-------+----------------+------------------------+-------------
o.3x. .. ..    |  3  0 |  3  0  0  0  0 | 16  *  *  *  *  *  * * | 1 1  0  0  0
.. x.4x. ..    |  8  0 |  4  4  0  0  0 |  * 12  *  *  *  *  * * | 1 0  1  0  0
.. x. .. x.    |  4  0 |  2  0  2  0  0 |  *  * 24  *  *  *  * * | 0 1  0  1  0
.. .. x. x.    |  4  0 |  0  2  2  0  0 |  *  *  * 12  *  *  * * | 0 0  0  0  2
.. xo .. ..&#x |  2  1 |  1  0  0  2  0 |  *  *  *  * 48  *  * * | 0 0  1  1  0
.. .. xx ..&#x |  2  2 |  0  1  0  2  1 |  *  *  *  *  * 48  * * | 0 0  1  0  1
.. .. .. xo&#x |  2  1 |  0  0  1  2  0 |  *  *  *  *  *  * 48 * | 0 0  0  1  1
.. .o4.x ..    |  0  4 |  0  0  0  0  4 |  *  *  *  *  *  *  * 6 | 0 0  2  0  0
---------------+-------+----------------+------------------------+-------------
o.3x.4x. ..     24  0 | 24 12  0  0  0 |  8  6  0  0  0  0  0 0 | 2 *  *  *  *
o.3x. .. x.      6  0 |  6  0  3  0  0 |  2  0  3  0  0  0  0 0 | * 8  *  *  *  (type A)
.. xo4xx ..&#x   8  4 |  4  4  0  8  4 |  0  1  0  0  4  4  0 1 | * * 12  *  *
.. xo .. xo&#x   4  1 |  2  0  2  4  0 |  0  0  1  0  2  0  2 0 | * *  * 24  *
.. .. xx xo&#x   4  2 |  0  2  2  4  1 |  0  0  0  1  0  2  2 0 | * *  *  * 24  (type B)

© 2004-2018
top of page