Acronym tehipau tuttip
Name hip-wise tetra-augmented tuttip
Dihedral angles
  • at {4} between squippy and A-trip:   arccos[-(1+sqrt(40))/sqrt(54)] = 175.376378°
  • at {4} between B-trip and B-trip:   arccos[(4-4 sqrt(10)-sqrt[185+40 sqrt(10)])/27] = 166.908150°
  • at {6} between tricu and tut:   arccos[-sqrt(5/8)] = 142.238756°
  • at {3} between squippy and B-trip:   arccos[-sqrt(3/8)] = 127.761244°
  • at {4} between tricu and B-trip:   arccos[-1/sqrt(6)] = 114.094843°
  • at {3} between squippy and tricu:   arccos(-1/4) = 104.477512°
  • at {3} between A-trip and tut:   90°
  • at {3} between tricu and tricu:   arccos(1/4) = 75.522488°
Face vector 36, 108, 110, 38
Confer
blend-component:
tuttip   tripuf  
general polytopal classes:
bistratic lace towers  

For this polychoron every hip of tuttip will be augmented accordingly.


Incidence matrix according to Dynkin symbol

oa3xo3xx xo&#zx   → height = 0, where a = (2+sqrt(10))/3 = 1.720759
(tegum sum of tuttip and (a,x)-co

o.3o.3o. o.    | 24  * |  2  1  1  2  0 | 1 2  2 1  2  2  2 0 | 1 1 2  2  2
.o3.o3.o .o    |  * 12 |  0  0  0  4  2 | 0 0  0 0  2  4  2 1 | 0 0 2  1  2
---------------+-------+----------------+---------------------+------------
.. x. .. ..    |  2  0 | 24  *  *  *  * | 1 1  1 0  1  0  0 0 | 1 1 1  1  0
.. .. x. ..    |  2  0 |  * 12  *  *  * | 0 2  0 1  0  2  0 0 | 1 0 2  0  2
.. .. .. x.    |  2  0 |  *  * 12  *  * | 0 0  2 1  0  0  2 0 | 0 1 0  2  2
oo3oo3oo oo&#x |  1  1 |  *  *  * 48  * | 0 0  0 0  1  1  1 0 | 0 0 1  1  1
.. .. .x ..    |  0  2 |  *  *  *  * 12 | 0 0  0 0  0  2  0 1 | 0 0 2  0  1
---------------+-------+----------------+---------------------+------------
o.3x. .. ..    |  3  0 |  3  0  0  0  0 | 8 *  * *  *  *  * * | 1 1 0  0  0
.. x.3x. ..    |  6  0 |  3  3  0  0  0 | * 8  * *  *  *  * * | 1 0 1  0  0
.. x. .. x.    |  4  0 |  2  0  2  0  0 | * * 12 *  *  *  * * | 0 1 0  1  0
.. .. x. x.    |  4  0 |  0  2  2  0  0 | * *  * 6  *  *  * * | 0 0 0  0  2
.. xo .. ..&#x |  2  1 |  1  0  0  2  0 | * *  * * 24  *  * * | 0 0 1  1  0
.. .. xx ..&#x |  2  2 |  0  1  0  2  1 | * *  * *  * 24  * * | 0 0 1  0  1
.. .. .. xo&#x |  2  1 |  0  0  1  2  0 | * *  * *  *  * 24 * | 0 0 0  1  1
.. .o3.x ..    |  0  3 |  0  0  0  0  3 | * *  * *  *  *  * 4 | 0 0 2  0  0
---------------+-------+----------------+---------------------+------------
o.3x.3x. ..     12  0 | 12  6  0  0  0 | 4 4  0 0  0  0  0 0 | 2 * *  *  *
o.3x. .. x.      6  0 |  6  0  3  0  0 | 2 0  3 0  0  0  0 0 | * 4 *  *  *  (type A)
.. xo3xx ..&#x   6  3 |  3  3  0  6  3 | 0 1  0 0  3  3  0 1 | * * 8  *  *
.. xo .. xo&#x   4  1 |  2  0  2  4  0 | 0 0  1 0  2  0  2 0 | * * * 12  *
.. .. xx xo&#x   4  2 |  0  2  2  4  1 | 0 0  0 1  0  2  2 0 | * * *  * 12  (type B)

© 2004-2024
top of page