Acronym | ... |
Name | hyperbolic o3o3o3o4s3s pentacomb |
Circumradius | sqrt[-(2+sqrt(5))] = 2.058171 i |
This para-compact hyperbolic tesselation uses the sadit in the sense of an infinite horoteron as one of its facet types.
Incidence matrix according to Dynkin symbol
o3o3o3o4s3s (N,M → ∞) demi( . . . . . . ) | 48NM ♦ 10 10 | 5 30 30 | 10 10 20 40 | 5 10 5 25 | 1 5 6 --------------------+------+-------------+------------------+------------------------+---------------------+------------- . . . o4s . | 2 | 240NM * | 0 6 2 | 3 1 6 6 | 3 3 2 6 | 1 3 2 sefa( . . . . s3s ) | 2 | * 240NM | 1 0 4 | 0 4 0 6 | 0 6 0 4 | 0 4 1 --------------------+------+-------------+------------------+------------------------+---------------------+------------- . . . . s3s | 3 | 0 3 | 80NM * * ♦ 0 4 0 0 | 0 6 0 0 | 0 4 0 sefa( . . o3o4s . ) | 3 | 3 0 | * 480NM * | 1 0 2 1 | 2 1 1 2 | 1 2 1 sefa( . . . o4s3s ) | 3 | 1 2 | * * 480NM | 0 1 0 3 | 0 3 0 3 | 0 3 1 --------------------+------+-------------+------------------+------------------------+---------------------+------------- . . o3o4s . ♦ 4 | 6 0 | 0 4 0 | 120NM * * * | 2 1 0 0 | 1 2 0 . . . o4s3s ♦ 12 | 6 24 | 8 0 12 | * 40NM * * | 0 3 0 0 | 0 3 0 sefa( . o3o3o4s . ) ♦ 4 | 6 0 | 0 4 0 | * * 240NM * | 1 0 1 1 | 1 1 1 sefa( . . o3o4s3s ) ♦ 4 | 3 3 | 0 1 3 | * * * 480NM | 0 1 0 2 | 0 2 1 --------------------+------+-------------+------------------+------------------------+---------------------+------------- . o3o3o4s . ♦ 8 | 24 0 | 0 32 0 | 8 0 8 0 | 30NM * * * | 1 1 0 . . o3o4s3s ♦ 96 | 144 288 | 96 96 288 | 24 24 0 96 | * 5NM * * | 0 2 0 sefa( o3o3o3o4s . ) ♦ 5 | 10 0 | 0 10 0 | 0 0 5 0 | * * 48NM * | 1 0 1 sefa( . o3o3o4s3s ) ♦ 5 | 6 4 | 0 4 6 | 0 0 1 4 | * * * 240NM | 0 1 1 --------------------+------+-------------+------------------+------------------------+---------------------+------------- o3o3o3o4s . ♦ 16 | 80 0 | 0 160 0 | 40 0 80 0 | 10 0 16 0 | 3NM * * . o3o3o4s3s ♦ 24M | 72M 96M | 32M 96M 144M | 24M 12M 24M 96M | 3M M 0 24M | * 10N * sefa( o3o3o3o4s3s ) ♦ 6 | 10 5 | 0 10 10 | 0 0 5 10 | 0 0 1 5 | * * 48NM starting figure: o3o3o3o4x3x
s3s3s4o3o3o (N,M,K → ∞) demi( . . . . . . ) | 48NMK ♦ 4 6 2 8 | 1 4 12 18 18 12 | 4 6 6 4 24 16 16 4 | 6 4 4 1 20 5 5 | 4 1 1 6 --------------------+-------+---------------------------+-----------------------------------------+----------------------------------------------------+-----------------------------------------+------------------- s 2 s . . . | 2 | 96NMK * * * | 0 0 2 6 0 0 | 1 3 0 0 6 6 0 0 | 3 3 0 0 6 2 0 | 3 1 0 2 . . s4o . . | 2 | * 144NMK * * | 0 0 0 2 2 4 | 0 1 1 2 2 4 4 2 | 1 2 2 1 4 2 2 | 2 1 1 2 sefa( s3s . . . . ) | 2 | * * 48NMK * | 1 0 4 0 0 0 | 4 0 0 0 6 0 0 0 | 6 0 0 0 4 0 0 | 4 0 0 1 sefa( . s3s . . . ) | 2 | * * * 192NMK | 0 1 1 0 3 0 | 1 0 3 0 3 0 3 0 | 3 0 3 0 3 0 1 | 3 0 1 1 --------------------+-------+---------------------------+-----------------------------------------+----------------------------------------------------+-----------------------------------------+------------------- s3s . . . . | 3 | 0 0 3 0 | 16NMK * * * * * ♦ 4 0 0 0 0 0 0 0 | 6 0 0 0 0 0 0 | 4 0 0 0 . s3s . . . | 3 | 0 0 0 3 | * 64NMK * * * * | 1 0 3 0 0 0 0 0 | 3 0 3 0 0 0 0 | 3 0 1 0 sefa( s3s3s . . . ) | 3 | 1 0 1 1 | * * 192NMK * * * | 1 0 0 0 3 0 0 0 | 3 0 0 0 3 0 0 | 3 0 0 1 sefa( s 2 s4o . . ) | 3 | 2 1 0 0 | * * * 288NMK * * | 0 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 sefa( . s3s4o . . ) | 3 | 0 1 0 2 | * * * * 288NMK * | 0 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 sefa( . . s4o3o . ) | 3 | 0 3 0 0 | * * * * * 192NMK | 0 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 --------------------+-------+---------------------------+-----------------------------------------+----------------------------------------------------+-----------------------------------------+------------------- s3s3s . . . ♦ 12 | 6 0 12 12 | 4 4 12 0 0 0 | 16NMK * * * * * * * | 3 0 0 0 0 0 0 | 3 0 0 0 s 2 s4o . . ♦ 4 | 4 2 0 0 | 0 0 0 4 0 0 | * 72NMK * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 . s3s4o . . ♦ 12 | 0 6 0 24 | 0 8 0 0 12 0 | * * 24NMK * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 . . s4o3o . ♦ 4 | 0 6 0 0 | 0 0 0 0 0 4 | * * * 48NMK * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 sefa( s3s3s4o . . ) ♦ 4 | 2 1 1 2 | 0 0 2 1 1 0 | * * * * 288NMK * * * | 1 0 0 0 2 0 0 | 2 0 0 1 sefa( s 2 s4o3o . ) ♦ 4 | 3 3 0 0 | 0 0 0 3 0 1 | * * * * * 192NMK * * | 0 1 0 0 1 1 0 | 1 1 0 1 sefa( . s3s4o3o . ) ♦ 4 | 0 3 0 3 | 0 0 0 0 3 1 | * * * * * * 192NMK * | 0 0 1 0 1 0 1 | 1 0 1 1 sefa( . . s4o3o3o ) ♦ 4 | 0 6 0 0 | 0 0 0 0 0 4 | * * * * * * * 48NMK | 0 0 0 1 0 1 1 | 0 1 1 1 --------------------+-------+---------------------------+-----------------------------------------+----------------------------------------------------+-----------------------------------------+------------------- s3s3s4o . . ♦ 96 | 96 48 96 192 | 32 64 192 96 96 0 | 16 24 8 0 96 0 0 0 | 3NMK * * * * * * | 2 0 0 0 s 2 s4o3o . ♦ 8 | 12 12 0 0 | 0 0 0 24 0 8 | 0 6 0 2 0 8 0 0 | * 24NMK * * * * * | 1 1 0 0 . s3s4o3o . ♦ 96 | 0 144 0 288 | 0 96 0 0 288 96 | 0 0 24 24 0 0 96 0 | * * 2NMK * * * * | 1 0 1 0 . . s4o3o3o ♦ 8 | 0 24 0 0 | 0 0 0 0 0 32 | 0 0 0 8 0 0 0 8 | * * * 6NMK * * * | 0 1 1 0 sefa( s3s3s4o3o . ) ♦ 5 | 3 3 1 3 | 0 0 3 3 3 1 | 0 0 0 0 3 1 1 0 | * * * * 192NMK * * | 1 0 0 1 sefa( s 2 s4o3o3o ) ♦ 5 | 4 6 0 0 | 0 0 0 6 0 4 | 0 0 0 0 0 4 0 1 | * * * * * 48NMK * | 0 1 0 1 sefa( . s3s4o3o3o ) ♦ 5 | 0 6 0 4 | 0 0 0 0 6 4 | 0 0 0 0 0 0 4 1 | * * * * * * 48NMK | 0 0 1 1 --------------------+-------+---------------------------+-----------------------------------------+----------------------------------------------------+-----------------------------------------+------------------- s3s3s4o3o . ♦ 96M | 144M 144M 96M 288M | 32M 96M 288M 288M 288M 96M | 24M 72M 24M 24M 288M 96M 96M 0 | 3M 12M M 0 96M 0 0 | 2NK * * * s 2 s4o3o3o ♦ 16 | 32 48 0 0 | 0 0 0 96 0 64 | 0 24 0 16 0 64 0 16 | 0 8 0 2 0 16 0 | * 3NMK * * . s3s4o3o3o ♦ 24K | 0 72K 0 96K | 0 32K 0 0 144K 96K | 0 0 12K 24K 0 0 96K 24K | 0 0 K 3K 0 0 24K | * * 2NM * sefa( s3s3s4o3o3o ) ♦ 6 | 4 6 1 4 | 0 0 4 6 6 4 | 0 0 0 0 6 4 4 1 | 0 0 0 0 4 1 1 | * * * 48NMK starting figure: x3x3x4o3o3o
© 2004-2025 | top of page |