Acronym n,doe-dippip
Name n-gon - dodecahedron duoprismatic prism
Especially tradope (n=3)   cubedoe (n=4)  

Incidence matrix according to Dynkin symbol

x xno o3o5x   (n>2)

. . . . . . | 40n |   1   2   3 |   2   3  1   6   3 |  1   6   3  3   6  1 |  3   6 1  3  2 |  3 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x . . . . . |   2 | 20n   *   * |   2   3  0   0   0 |  1   6   3  0   0  0 |  3   6 1  0  0 |  3 2 0
. x . . . . |   2 |   * 40n   * |   1   0  1   3   0 |  1   3   0  3   3  0 |  3   3 0  3  1 |  3 1 1
. . . . . x |   2 |   *   * 60n |   0   1  0   2   2 |  0   2   2  1   4  1 |  1   4 1  2  2 |  2 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x x . . . . |   4 |   2   2   0 | 20n   *  *   *   * |  1   3   0  0   0  0 |  3   3 0  0  0 |  3 1 0
x . . . . x |   4 |   2   0   2 |   * 30n  *   *   * |  0   2   2  0   0  0 |  1   4 1  0  0 |  2 2 0
. xno . . . |   n |   0   n   0 |   *   * 40   *   * |  1   0   0  3   0  0 |  3   0 0  3  0 |  3 0 1
. x . . . x |   4 |   0   2   2 |   *   *  * 60n   * |  0   1   0  1   2  0 |  1   2 0  2  1 |  2 1 1
. . . . o5x |   5 |   0   0   5 |   *   *  *   * 24n |  0   0   1  0   2  1 |  0   2 1  1  2 |  1 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x xno . . .   2n |   n  2n   0 |   n   0  2   0   0 | 20   *   *  *   *  * |  3   0 0  0  0 |  3 0 0
x x . . . x    8 |   4   4   4 |   2   2  0   2   0 |  * 30n   *  *   *  * |  1   2 0  0  0 |  2 1 0
x . . . o5x   10 |   5   0  10 |   0   5  0   0   2 |  *   * 12n  *   *  * |  0   2 1  0  0 |  1 2 0
. xno . . x   2n |   0  2n   n |   0   0  2   n   0 |  *   *   * 60   *  * |  1   0 0  2  0 |  2 0 1
. x . . o5x   10 |   0   5  10 |   0   0  0   5   2 |  *   *   *  * 24n  * |  0   1 0  1  1 |  1 1 1
. . . o3o5x   20 |   0   0  30 |   0   0  0   0  12 |  *   *   *  *   * 2n |  0   0 1  0  2 |  0 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x xno . . x   4n |  2n  4n  2n |  2n   n  4  2n   0 |  2   n   0  2   0  0 | 30   * *  *  * |  2 0 0
x x . . o5x   20 |  10  10  20 |   5  10  0  10   4 |  0   5   2  0   2  0 |  * 12n *  *  * |  1 1 0
x . . o3o5x   40 |  20   0  60 |   0  30  0   0  24 |  0   0  12  0   0  2 |  *   * n  *  * |  0 2 0
. xno . o5x   5n |   0  5n  5n |   0   0  5  5n   n |  0   0   0  5   n  0 |  *   * * 24  * |  1 0 1
. x . o3o5x   40 |   0  20  60 |   0   0  0  30  24 |  0   0   0  0  12  2 |  *   * *  * 2n |  0 1 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x xno . o5x  10n |  5n 10n 10n |  5n  5n 10 10n  2n |  5  5n   n 10  2n  0 |  5   n 0  2  0 | 12 * *
x x . o3o5x   80 |  40  40 120 |  20  60  0  60  48 |  0  30  24  0  24  4 |  0  12 2  0  2 |  * n *
. xno o3o5x  20n |   0 20n 30n |   0   0 20 30n 12n |  0   0   0 30 12n  n |  0   0 0 12  n |  * * 2

© 2004-2019
top of page