Acronym n,co-dippip
Name n-gon - cuboctahedron duoprismatic prism
Face vector 24n, 84n, 112n+24, 68n+60, 17n+52, n+16
Especially tracope (n=3)   cocube (n=4)  
Confer
general polytopal classes:
Wythoffian polypeta  

Incidence matrix according to Dynkin symbol

x xno o3x4o   (n>2)

. . . . . . | 24n |   1   2   4 |   2   4  1   8   2   2 |  1   8  2  2  4   4   4  1 |  4  4  4 1  2  2  2 | 2 2 2 1
------------+-----+-------------+------------------------+----------------------------+---------------------+--------
x . . . . . |   2 | 12n   *   * |   2   4  0   0   0   0 |  1   8  2  2  0   0   0  0 |  4  4  4 1  0  0  0 | 2 2 2 0
. x . . . . |   2 |   * 24n   * |   1   0  1   4   0   0 |  1   4  0  0  4   2   2  0 |  4  2  2 0  2  2  1 | 2 2 1 1
. . . . x . |   2 |   *   * 48n |   0   1  0   2   1   1 |  0   2  1  1  1   2   2  1 |  1  2  2 1  1  1  2 | 1 1 2 1
------------+-----+-------------+------------------------+----------------------------+---------------------+--------
x x . . . . |   4 |   2   2   0 | 12n   *  *   *   *   * |  1   4  0  0  0   0   0  0 |  4  2  2 0  0  0  0 | 2 2 1 0
x . . . x . |   4 |   2   0   2 |   * 24n  *   *   *   * |  0   2  1  1  0   0   0  0 |  1  2  2 1  0  0  0 | 1 1 2 0
. xno . . . |   n |   0   n   0 |   *   * 24   *   *   * |  1   0  0  0  4   0   0  0 |  4  0  0 0  2  2  0 | 2 2 0 1
. x . . x . |   4 |   0   2   2 |   *   *  * 48n   *   * |  0   1  0  0  1   1   1  0 |  1  1  1 0  1  1  1 | 1 1 1 1
. . . o3x . |   3 |   0   0   3 |   *   *  *   * 16n   * |  0   0  1  0  0   2   0  1 |  0  2  0 1  1  0  2 | 1 0 2 1
. . . . x4o |   4 |   0   0   4 |   *   *  *   *   * 12n |  0   0  0  1  0   0   2  1 |  0  0  2 1  0  1  2 | 0 1 2 1
------------+-----+-------------+------------------------+----------------------------+---------------------+--------
x xno . . .   2n |   n  2n   0 |   n   0  2   0   0   0 | 12   *  *  *  *   *   *  * |  4  0  0 0  0  0  0 | 2 2 0 0
x x . . x .    8 |   4   4   4 |   2   2  0   2   0   0 |  * 24n  *  *  *   *   *  * |  1  1  1 0  0  0  0 | 1 1 1 0
x . . o3x .    6 |   3   0   6 |   0   3  0   0   2   0 |  *   * 8n  *  *   *   *  * |  0  2  0 1  0  0  0 | 1 0 2 0
x . . . x4o    8 |   4   0   8 |   0   4  0   0   0   2 |  *   *  * 6n  *   *   *  * |  0  0  2 1  0  0  0 | 0 1 2 0
. xno . x .   2n |   0  2n   n |   0   0  2   n   0   0 |  *   *  *  * 48   *   *  * |  1  0  0 0  1  1  0 | 1 1 0 1
. x . o3x .    6 |   0   3   6 |   0   0  0   3   2   0 |  *   *  *  *  * 16n   *  * |  0  1  0 0  1  0  1 | 1 0 1 1
. x . . x4o    8 |   0   4   8 |   0   0  0   4   0   2 |  *   *  *  *  *   * 12n  * |  0  0  1 0  0  1  1 | 0 1 1 1
. . . o3x4o   12 |   0   0  24 |   0   0  0   0   8   6 |  *   *  *  *  *   *   * 2n |  0  0  0 1  0  0  2 | 0 0 2 1
------------+-----+-------------+------------------------+----------------------------+---------------------+--------
x xno . x .   4n |  2n  4n  2n |  2n   n  4  2n   0   0 |  2   n  0  0  2   0   0  0 | 24  *  * *  *  *  * | 1 1 0 0
x x . o3x .   12 |   6   6  12 |   3   6  0   6   4   0 |  0   3  2  0  0   2   0  0 |  * 8n  * *  *  *  * | 1 0 1 0
x x . . x4o   16 |   8   8  16 |   4   8  0   8   0   4 |  0   4  0  2  0   0   2  0 |  *  * 6n *  *  *  * | 0 1 1 0
x . . o3x4o   24 |  12   0  48 |   0  24  0   0  16  12 |  0   0  8  6  0   0   0  2 |  *  *  * n  *  *  * | 0 0 2 0
. xno o3x .   3n |   0  3n  3n |   0   0  3  3n   n   0 |  0   0  0  0  3   n   0  0 |  *  *  * * 16  *  * | 1 0 0 1
. xno . x4o   4n |   0  4n  4n |   0   0  4  4n   0   n |  0   0  0  0  4   0   n  0 |  *  *  * *  * 12  * | 0 1 0 1
. x . o3x4o   24 |   0  12  48 |   0   0  0  24  16  12 |  0   0  0  0  0   8   6  2 |  *  *  * *  *  * 2n | 0 0 1 1
------------+-----+-------------+------------------------+----------------------------+---------------------+--------
x xno o3x .   6n |  3n  6n  6n |  3n  3n  6  6n  2n   0 |  3  3n  n  0  6  2n   0  0 |  3  n  0 0  2  0  0 | 8 * * *
x xno . x4o   8n |  4n  8n  8n |  4n  4n  8  8n   0  2n |  4  4n  0  n  8   0  2n  0 |  4  0  n 0  0  2  0 | * 6 * *
x x . o3x4o   48 |  24  24  96 |  12  48  0  48  32  24 |  0  24 16 12  0  16  12  4 |  0  8  6 2  0  0  2 | * * n *
. xno o3x4o  12n |   0 12n 24n |   0   0 12 24n  8n  6n |  0   0  0  0 24  8n  6n  n |  0  0  0 0  8  6  n | * * * 2

x xno x3o3x   (n>2)

. . . . . . | 24n |   1   2   2   2 |   2   2   2  1   4   4  1   2  1 |  1   4   4  1  2  1  2  2  2   4  2  1 |  2  2  2  4  2 1 1  2 1  2 | 1 2 1 2 1
------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+----------
x . . . . . |   2 | 12n   *   *   * |   2   2   2  0   0   0  0   0  0 |  1   4   4  1  2  1  0  0  0   0  0  0 |  2  2  2  4  2 1 0  0 0  0 | 1 2 1 2 0
. x . . . . |   2 |   * 24n   *   * |   1   0   0  1   2   2  0   0  0 |  1   2   2  0  0  0  2  2  1   2  1  0 |  2  2  1  2  1 0 1  2 1  1 | 1 2 1 1 1
. . . x . . |   2 |   *   * 24n   * |   0   1   0  0   2   0  1   1  0 |  0   2   0  1  1  0  1  0  2   2  0  1 |  1  0  2  2  0 1 1  1 0  2 | 1 1 0 2 1
. . . . . x |   2 |   *   *   * 24n |   0   0   1  0   0   2  0   1  1 |  0   0   2  0  1  1  0  1  0   2  2  1 |  0  1  0  2  2 1 0  1 1  2 | 0 1 1 2 1
------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+----------
x x . . . . |   4 |   2   2   0   0 | 12n   *   *  *   *   *  *   *  * |  1   2   2  0  0  0  0  0  0   0  0  0 |  2  2  1  2  1 0 0  0 0  0 | 1 2 1 1 0
x . . x . . |   4 |   2   0   2   0 |   * 12n   *  *   *   *  *   *  * |  0   2   0  1  1  0  0  0  0   0  0  0 |  1  0  2  2  0 1 0  0 0  0 | 1 1 0 2 0
x . . . . x |   4 |   2   0   0   2 |   *   * 12n  *   *   *  *   *  * |  0   0   2  0  1  1  0  0  0   0  0  0 |  0  1  0  2  2 1 0  0 0  0 | 0 1 1 2 0
. xno . . . |   n |   0   n   0   0 |   *   *   * 24   *   *  *   *  * |  1   0   0  0  0  0  2  2  0   0  0  0 |  2  2  0  0  0 0 1  2 1  0 | 1 2 1 0 1
. x . x . . |   4 |   0   2   2   0 |   *   *   *  * 24n   *  *   *  * |  0   1   0  0  0  0  1  0  1   1  0  0 |  1  0  1  1  0 0 1  1 0  1 | 1 1 0 1 1
. x . . . x |   4 |   0   2   0   2 |   *   *   *  *   * 24n  *   *  * |  0   0   1  0  0  0  0  1  0   1  1  0 |  0  1  0  1  1 0 0  1 1  1 | 0 1 1 1 1
. . . x3o . |   3 |   0   0   3   0 |   *   *   *  *   *   * 8n   *  * |  0   0   0  1  0  0  0  0  2   0  0  1 |  0  0  2  0  0 1 1  0 0  2 | 1 0 0 2 1
. . . x . x |   4 |   0   0   2   2 |   *   *   *  *   *   *  * 12n  * |  0   0   0  0  1  0  0  0  0   2  0  1 |  0  0  0  2  0 1 0  1 0  2 | 0 1 0 2 1
. . . . o3x |   3 |   0   0   0   3 |   *   *   *  *   *   *  *   * 8n |  0   0   0  0  0  1  0  0  0   0  2  1 |  0  0  0  0  2 1 0  0 1  2 | 0 0 1 2 1
------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+----------
x xno . . .   2n |   n  2n   0   0 |   n   0   0  2   0   0  0   0  0 | 12   *   *  *  *  *  *  *  *   *  *  * |  2  2  0  0  0 0 0  0 0  0 | 1 2 1 0 0
x x . x . .    8 |   4   4   4   0 |   2   2   0  0   2   0  0   0  0 |  * 12n   *  *  *  *  *  *  *   *  *  * |  1  0  1  1  0 0 0  0 0  0 | 1 1 0 1 0
x x . . . x    8 |   4   4   0   4 |   2   0   2  0   0   2  0   0  0 |  *   * 12n  *  *  *  *  *  *   *  *  * |  0  1  0  1  1 0 0  0 0  0 | 0 1 1 1 0
x . . x3o .    6 |   3   0   6   0 |   0   3   0  0   0   0  2   0  0 |  *   *   * 4n  *  *  *  *  *   *  *  * |  0  0  2  0  0 1 0  0 0  0 | 1 0 0 2 0
x . . x . x    8 |   4   0   4   4 |   0   2   2  0   0   0  0   2  0 |  *   *   *  * 6n  *  *  *  *   *  *  * |  0  0  0  2  0 1 0  0 0  0 | 0 1 0 2 0
x . . . o3x    6 |   3   0   0   6 |   0   0   3  0   0   0  0   0  2 |  *   *   *  *  * 4n  *  *  *   *  *  * |  0  0  0  0  2 1 0  0 0  0 | 0 0 1 2 0
. xno x . .   2n |   0  2n   n   0 |   0   0   0  2   n   0  0   0  0 |  *   *   *  *  *  * 24  *  *   *  *  * |  1  0  0  0  0 0 1  1 0  0 | 1 1 0 0 1
. xno . . x   2n |   0  2n   0   n |   0   0   0  2   0   n  0   0  0 |  *   *   *  *  *  *  * 24  *   *  *  * |  0  1  0  0  0 0 0  1 1  0 | 0 1 1 0 1
. x . x3o .    6 |   0   3   6   0 |   0   0   0  0   3   0  2   0  0 |  *   *   *  *  *  *  *  * 8n   *  *  * |  0  0  1  0  0 0 1  0 0  1 | 1 0 0 1 1
. x . x . x    8 |   0   4   4   4 |   0   0   0  0   2   2  0   2  0 |  *   *   *  *  *  *  *  *  * 12n  *  * |  0  0  0  1  0 0 0  1 0  1 | 0 1 0 1 1
. x . . o3x    6 |   0   3   0   6 |   0   0   0  0   0   3  0   0  2 |  *   *   *  *  *  *  *  *  *   * 8n  * |  0  0  0  0  1 0 0  0 1  1 | 0 0 1 1 1
. . . x3o3x   12 |   0   0  12  12 |   0   0   0  0   0   0  4   6  4 |  *   *   *  *  *  *  *  *  *   *  * 2n |  0  0  0  0  0 1 0  0 0  2 | 0 0 0 2 1
------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+----------
x xno x . .   4n |  2n  4n  2n   0 |  2n   n   0  4  2n   0  0   0  0 |  2   n   0  0  0  0  2  0  0   0  0  0 | 12  *  *  *  * * *  * *  * | 1 1 0 0 0
x xno . . x   4n |  2n  4n   0  2n |  2n   0   n  4   0  2n  0   0  0 |  2   0   n  0  0  0  0  2  0   0  0  0 |  * 12  *  *  * * *  * *  * | 0 1 1 0 0
x x . x3o .   12 |   6   6  12   0 |   3   6   0  0   6   0  4   0  0 |  0   3   0  2  0  0  0  0  2   0  0  0 |  *  * 4n  *  * * *  * *  * | 1 0 0 1 0
x x . x . x   16 |   8   8   8   8 |   4   4   4  0   4   4  0   4  0 |  0   2   2  0  2  0  0  0  0   2  0  0 |  *  *  * 6n  * * *  * *  * | 0 1 0 1 0
x x . . o3x   12 |   6   6   0  12 |   3   0   6  0   0   6  0   0  4 |  0   0   3  0  0  2  0  0  0   0  2  0 |  *  *  *  * 4n * *  * *  * | 0 0 1 1 0
x . . x3o3x   24 |  12   0  24  24 |   0  12  12  0   0   0  8  12  8 |  0   0   0  4  6  4  0  0  0   0  0  2 |  *  *  *  *  * n *  * *  * | 0 0 0 2 0
. xno x3o .   3n |   0  3n  3n   0 |   0   0   0  3  3n   0  n   0  0 |  0   0   0  0  0  0  3  0  n   0  0  0 |  *  *  *  *  * * 8  * *  * | 1 0 0 0 1
. xno x . x   4n |   0  4n  2n  2n |   0   0   0  4  2n  2n  0   n  0 |  0   0   0  0  0  0  2  2  0   n  0  0 |  *  *  *  *  * * * 12 *  * | 0 1 0 0 1
. xno . o3x   3n |   0  3n   0  3n |   0   0   0  3   0  3n  0   0  n |  0   0   0  0  0  0  0  3  0   0  n  0 |  *  *  *  *  * * *  * 8  * | 0 0 1 0 1
. x . x3o3x   24 |   0  12  24  24 |   0   0   0  0  12  12  8  12  8 |  0   0   0  0  0  0  0  0  4   6  4  2 |  *  *  *  *  * * *  * * 2n | 0 0 0 1 1
------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+----------
x xno x3o .   6n |  3n  6n  6n   0 |  3n  3n   0  6  6n   0 2n   0  0 |  3  3n   0  n  0  0  6  0 2n   0  0  0 |  3  0  n  0  0 0 2  0 0  0 | 4 * * * *
x xno x . x   8n |  4n  8n  4n  4n |  4n  2n  2n  8  4n  4n  0  2n  0 |  4  2n  2n  0  n  0  4  4  0  2n  0  0 |  2  2  0  n  0 0 0  2 0  0 | * 6 * * *
x xno . o3x   6n |  3n  6n   0  6n |  3n   0  3n  6   0  6n  0   0 2n |  3   0  3n  0  0  n  0  6  0   0 2n  0 |  0  3  0  0  n 0 0  0 2  0 | * * 4 * *
x x . x3o3x   48 |  24  24  48  48 |  12  24  24  0  24  24 16  24 16 |  0  12  12  8 12  8  0  0  8  12  8  4 |  0  0  4  6  4 2 0  0 0  2 | * * * n *
. xno x3o3x  12n |   0 12n 12n 12n |   0   0   0 12 12n 12n 4n  6n 4n |  0   0   0  0  0  0 12 12 4n  6n 4n  n |  0  0  0  0  0 0 4  6 4  n | * * * * 2

© 2004-2025
top of page