Acronym | n,co-dippip |
Name | n-gon - cuboctahedron duoprismatic prism |
Face vector | 24n, 84n, 112n+24, 68n+60, 17n+52, n+16 |
Especially | tracope (n=3) cocube (n=4) |
Confer |
|
Incidence matrix according to Dynkin symbol
x xno o3x4o (n>2) . . . . . . | 24n | 1 2 4 | 2 4 1 8 2 2 | 1 8 2 2 4 4 4 1 | 4 4 4 1 2 2 2 | 2 2 2 1 ------------+-----+-------------+------------------------+----------------------------+---------------------+-------- x . . . . . | 2 | 12n * * | 2 4 0 0 0 0 | 1 8 2 2 0 0 0 0 | 4 4 4 1 0 0 0 | 2 2 2 0 . x . . . . | 2 | * 24n * | 1 0 1 4 0 0 | 1 4 0 0 4 2 2 0 | 4 2 2 0 2 2 1 | 2 2 1 1 . . . . x . | 2 | * * 48n | 0 1 0 2 1 1 | 0 2 1 1 1 2 2 1 | 1 2 2 1 1 1 2 | 1 1 2 1 ------------+-----+-------------+------------------------+----------------------------+---------------------+-------- x x . . . . | 4 | 2 2 0 | 12n * * * * * | 1 4 0 0 0 0 0 0 | 4 2 2 0 0 0 0 | 2 2 1 0 x . . . x . | 4 | 2 0 2 | * 24n * * * * | 0 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 . xno . . . | n | 0 n 0 | * * 24 * * * | 1 0 0 0 4 0 0 0 | 4 0 0 0 2 2 0 | 2 2 0 1 . x . . x . | 4 | 0 2 2 | * * * 48n * * | 0 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . . o3x . | 3 | 0 0 3 | * * * * 16n * | 0 0 1 0 0 2 0 1 | 0 2 0 1 1 0 2 | 1 0 2 1 . . . . x4o | 4 | 0 0 4 | * * * * * 12n | 0 0 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1 ------------+-----+-------------+------------------------+----------------------------+---------------------+-------- x xno . . . ♦ 2n | n 2n 0 | n 0 2 0 0 0 | 12 * * * * * * * | 4 0 0 0 0 0 0 | 2 2 0 0 x x . . x . ♦ 8 | 4 4 4 | 2 2 0 2 0 0 | * 24n * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . . o3x . ♦ 6 | 3 0 6 | 0 3 0 0 2 0 | * * 8n * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 x . . . x4o ♦ 8 | 4 0 8 | 0 4 0 0 0 2 | * * * 6n * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 . xno . x . ♦ 2n | 0 2n n | 0 0 2 n 0 0 | * * * * 48 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . o3x . ♦ 6 | 0 3 6 | 0 0 0 3 2 0 | * * * * * 16n * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x4o ♦ 8 | 0 4 8 | 0 0 0 4 0 2 | * * * * * * 12n * | 0 0 1 0 0 1 1 | 0 1 1 1 . . . o3x4o ♦ 12 | 0 0 24 | 0 0 0 0 8 6 | * * * * * * * 2n | 0 0 0 1 0 0 2 | 0 0 2 1 ------------+-----+-------------+------------------------+----------------------------+---------------------+-------- x xno . x . ♦ 4n | 2n 4n 2n | 2n n 4 2n 0 0 | 2 n 0 0 2 0 0 0 | 24 * * * * * * | 1 1 0 0 x x . o3x . ♦ 12 | 6 6 12 | 3 6 0 6 4 0 | 0 3 2 0 0 2 0 0 | * 8n * * * * * | 1 0 1 0 x x . . x4o ♦ 16 | 8 8 16 | 4 8 0 8 0 4 | 0 4 0 2 0 0 2 0 | * * 6n * * * * | 0 1 1 0 x . . o3x4o ♦ 24 | 12 0 48 | 0 24 0 0 16 12 | 0 0 8 6 0 0 0 2 | * * * n * * * | 0 0 2 0 . xno o3x . ♦ 3n | 0 3n 3n | 0 0 3 3n n 0 | 0 0 0 0 3 n 0 0 | * * * * 16 * * | 1 0 0 1 . xno . x4o ♦ 4n | 0 4n 4n | 0 0 4 4n 0 n | 0 0 0 0 4 0 n 0 | * * * * * 12 * | 0 1 0 1 . x . o3x4o ♦ 24 | 0 12 48 | 0 0 0 24 16 12 | 0 0 0 0 0 8 6 2 | * * * * * * 2n | 0 0 1 1 ------------+-----+-------------+------------------------+----------------------------+---------------------+-------- x xno o3x . ♦ 6n | 3n 6n 6n | 3n 3n 6 6n 2n 0 | 3 3n n 0 6 2n 0 0 | 3 n 0 0 2 0 0 | 8 * * * x xno . x4o ♦ 8n | 4n 8n 8n | 4n 4n 8 8n 0 2n | 4 4n 0 n 8 0 2n 0 | 4 0 n 0 0 2 0 | * 6 * * x x . o3x4o ♦ 48 | 24 24 96 | 12 48 0 48 32 24 | 0 24 16 12 0 16 12 4 | 0 8 6 2 0 0 2 | * * n * . xno o3x4o ♦ 12n | 0 12n 24n | 0 0 12 24n 8n 6n | 0 0 0 0 24 8n 6n n | 0 0 0 0 8 6 n | * * * 2
x xno x3o3x (n>2) . . . . . . | 24n | 1 2 2 2 | 2 2 2 1 4 4 1 2 1 | 1 4 4 1 2 1 2 2 2 4 2 1 | 2 2 2 4 2 1 1 2 1 2 | 1 2 1 2 1 ------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+---------- x . . . . . | 2 | 12n * * * | 2 2 2 0 0 0 0 0 0 | 1 4 4 1 2 1 0 0 0 0 0 0 | 2 2 2 4 2 1 0 0 0 0 | 1 2 1 2 0 . x . . . . | 2 | * 24n * * | 1 0 0 1 2 2 0 0 0 | 1 2 2 0 0 0 2 2 1 2 1 0 | 2 2 1 2 1 0 1 2 1 1 | 1 2 1 1 1 . . . x . . | 2 | * * 24n * | 0 1 0 0 2 0 1 1 0 | 0 2 0 1 1 0 1 0 2 2 0 1 | 1 0 2 2 0 1 1 1 0 2 | 1 1 0 2 1 . . . . . x | 2 | * * * 24n | 0 0 1 0 0 2 0 1 1 | 0 0 2 0 1 1 0 1 0 2 2 1 | 0 1 0 2 2 1 0 1 1 2 | 0 1 1 2 1 ------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+---------- x x . . . . | 4 | 2 2 0 0 | 12n * * * * * * * * | 1 2 2 0 0 0 0 0 0 0 0 0 | 2 2 1 2 1 0 0 0 0 0 | 1 2 1 1 0 x . . x . . | 4 | 2 0 2 0 | * 12n * * * * * * * | 0 2 0 1 1 0 0 0 0 0 0 0 | 1 0 2 2 0 1 0 0 0 0 | 1 1 0 2 0 x . . . . x | 4 | 2 0 0 2 | * * 12n * * * * * * | 0 0 2 0 1 1 0 0 0 0 0 0 | 0 1 0 2 2 1 0 0 0 0 | 0 1 1 2 0 . xno . . . | n | 0 n 0 0 | * * * 24 * * * * * | 1 0 0 0 0 0 2 2 0 0 0 0 | 2 2 0 0 0 0 1 2 1 0 | 1 2 1 0 1 . x . x . . | 4 | 0 2 2 0 | * * * * 24n * * * * | 0 1 0 0 0 0 1 0 1 1 0 0 | 1 0 1 1 0 0 1 1 0 1 | 1 1 0 1 1 . x . . . x | 4 | 0 2 0 2 | * * * * * 24n * * * | 0 0 1 0 0 0 0 1 0 1 1 0 | 0 1 0 1 1 0 0 1 1 1 | 0 1 1 1 1 . . . x3o . | 3 | 0 0 3 0 | * * * * * * 8n * * | 0 0 0 1 0 0 0 0 2 0 0 1 | 0 0 2 0 0 1 1 0 0 2 | 1 0 0 2 1 . . . x . x | 4 | 0 0 2 2 | * * * * * * * 12n * | 0 0 0 0 1 0 0 0 0 2 0 1 | 0 0 0 2 0 1 0 1 0 2 | 0 1 0 2 1 . . . . o3x | 3 | 0 0 0 3 | * * * * * * * * 8n | 0 0 0 0 0 1 0 0 0 0 2 1 | 0 0 0 0 2 1 0 0 1 2 | 0 0 1 2 1 ------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+---------- x xno . . . ♦ 2n | n 2n 0 0 | n 0 0 2 0 0 0 0 0 | 12 * * * * * * * * * * * | 2 2 0 0 0 0 0 0 0 0 | 1 2 1 0 0 x x . x . . ♦ 8 | 4 4 4 0 | 2 2 0 0 2 0 0 0 0 | * 12n * * * * * * * * * * | 1 0 1 1 0 0 0 0 0 0 | 1 1 0 1 0 x x . . . x ♦ 8 | 4 4 0 4 | 2 0 2 0 0 2 0 0 0 | * * 12n * * * * * * * * * | 0 1 0 1 1 0 0 0 0 0 | 0 1 1 1 0 x . . x3o . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 0 | * * * 4n * * * * * * * * | 0 0 2 0 0 1 0 0 0 0 | 1 0 0 2 0 x . . x . x ♦ 8 | 4 0 4 4 | 0 2 2 0 0 0 0 2 0 | * * * * 6n * * * * * * * | 0 0 0 2 0 1 0 0 0 0 | 0 1 0 2 0 x . . . o3x ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 0 0 2 | * * * * * 4n * * * * * * | 0 0 0 0 2 1 0 0 0 0 | 0 0 1 2 0 . xno x . . ♦ 2n | 0 2n n 0 | 0 0 0 2 n 0 0 0 0 | * * * * * * 24 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . xno . . x ♦ 2n | 0 2n 0 n | 0 0 0 2 0 n 0 0 0 | * * * * * * * 24 * * * * | 0 1 0 0 0 0 0 1 1 0 | 0 1 1 0 1 . x . x3o . ♦ 6 | 0 3 6 0 | 0 0 0 0 3 0 2 0 0 | * * * * * * * * 8n * * * | 0 0 1 0 0 0 1 0 0 1 | 1 0 0 1 1 . x . x . x ♦ 8 | 0 4 4 4 | 0 0 0 0 2 2 0 2 0 | * * * * * * * * * 12n * * | 0 0 0 1 0 0 0 1 0 1 | 0 1 0 1 1 . x . . o3x ♦ 6 | 0 3 0 6 | 0 0 0 0 0 3 0 0 2 | * * * * * * * * * * 8n * | 0 0 0 0 1 0 0 0 1 1 | 0 0 1 1 1 . . . x3o3x ♦ 12 | 0 0 12 12 | 0 0 0 0 0 0 4 6 4 | * * * * * * * * * * * 2n | 0 0 0 0 0 1 0 0 0 2 | 0 0 0 2 1 ------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+---------- x xno x . . ♦ 4n | 2n 4n 2n 0 | 2n n 0 4 2n 0 0 0 0 | 2 n 0 0 0 0 2 0 0 0 0 0 | 12 * * * * * * * * * | 1 1 0 0 0 x xno . . x ♦ 4n | 2n 4n 0 2n | 2n 0 n 4 0 2n 0 0 0 | 2 0 n 0 0 0 0 2 0 0 0 0 | * 12 * * * * * * * * | 0 1 1 0 0 x x . x3o . ♦ 12 | 6 6 12 0 | 3 6 0 0 6 0 4 0 0 | 0 3 0 2 0 0 0 0 2 0 0 0 | * * 4n * * * * * * * | 1 0 0 1 0 x x . x . x ♦ 16 | 8 8 8 8 | 4 4 4 0 4 4 0 4 0 | 0 2 2 0 2 0 0 0 0 2 0 0 | * * * 6n * * * * * * | 0 1 0 1 0 x x . . o3x ♦ 12 | 6 6 0 12 | 3 0 6 0 0 6 0 0 4 | 0 0 3 0 0 2 0 0 0 0 2 0 | * * * * 4n * * * * * | 0 0 1 1 0 x . . x3o3x ♦ 24 | 12 0 24 24 | 0 12 12 0 0 0 8 12 8 | 0 0 0 4 6 4 0 0 0 0 0 2 | * * * * * n * * * * | 0 0 0 2 0 . xno x3o . ♦ 3n | 0 3n 3n 0 | 0 0 0 3 3n 0 n 0 0 | 0 0 0 0 0 0 3 0 n 0 0 0 | * * * * * * 8 * * * | 1 0 0 0 1 . xno x . x ♦ 4n | 0 4n 2n 2n | 0 0 0 4 2n 2n 0 n 0 | 0 0 0 0 0 0 2 2 0 n 0 0 | * * * * * * * 12 * * | 0 1 0 0 1 . xno . o3x ♦ 3n | 0 3n 0 3n | 0 0 0 3 0 3n 0 0 n | 0 0 0 0 0 0 0 3 0 0 n 0 | * * * * * * * * 8 * | 0 0 1 0 1 . x . x3o3x ♦ 24 | 0 12 24 24 | 0 0 0 0 12 12 8 12 8 | 0 0 0 0 0 0 0 0 4 6 4 2 | * * * * * * * * * 2n | 0 0 0 1 1 ------------+-----+-----------------+----------------------------------+----------------------------------------+----------------------------+---------- x xno x3o . ♦ 6n | 3n 6n 6n 0 | 3n 3n 0 6 6n 0 2n 0 0 | 3 3n 0 n 0 0 6 0 2n 0 0 0 | 3 0 n 0 0 0 2 0 0 0 | 4 * * * * x xno x . x ♦ 8n | 4n 8n 4n 4n | 4n 2n 2n 8 4n 4n 0 2n 0 | 4 2n 2n 0 n 0 4 4 0 2n 0 0 | 2 2 0 n 0 0 0 2 0 0 | * 6 * * * x xno . o3x ♦ 6n | 3n 6n 0 6n | 3n 0 3n 6 0 6n 0 0 2n | 3 0 3n 0 0 n 0 6 0 0 2n 0 | 0 3 0 0 n 0 0 0 2 0 | * * 4 * * x x . x3o3x ♦ 48 | 24 24 48 48 | 12 24 24 0 24 24 16 24 16 | 0 12 12 8 12 8 0 0 8 12 8 4 | 0 0 4 6 4 2 0 0 0 2 | * * * n * . xno x3o3x ♦ 12n | 0 12n 12n 12n | 0 0 0 12 12n 12n 4n 6n 4n | 0 0 0 0 0 0 12 12 4n 6n 4n n | 0 0 0 0 0 0 4 6 4 n | * * * * 2
© 2004-2025 | top of page |