Acronym n,co-dip Name n-gon - cuboctahedron duoprism Circumradius sqrt[1+1/(4 sin2(π/n))] Especially traco (n=3)   squaco (n=4)   peco (n=5)   haco (n=6)   oco (n=8) Confer general polytopal classes: segmentotera

Incidence matrix according to Dynkin symbol

```xno o3x4o   (n>2)

. . . . . | 12n |   2   4 |  1   8  2  2 |  4  4  4 1 | 2 2 2
----------+-----+---------+--------------+------------+------
x . . . . |   2 | 12n   * |  1   4  0  0 |  4  2  2 0 | 2 2 1
. . . x . |   2 |   * 24n |  0   2  1  1 |  1  2  2 1 | 1 1 2
----------+-----+---------+--------------+------------+------
xno . . . |   n |   n   0 | 12   *  *  * |  4  0  0 0 | 2 2 0
x . . x . |   4 |   2   2 |  * 24n  *  * |  1  1  1 0 | 1 1 1
. . o3x . |   3 |   0   3 |  *   * 8n  * |  0  2  0 1 | 1 0 2
. . . x4o |   4 |   0   4 |  *   *  * 6n |  0  0  2 1 | 0 1 2
----------+-----+---------+--------------+------------+------
xno . x . ♦  2n |  2n   n |  2   n  0  0 | 24  *  * * | 1 1 0
x . o3x . ♦   6 |   3   6 |  0   3  2  0 |  * 8n  * * | 1 0 1
x . . x4o ♦   8 |   4   8 |  0   4  0  2 |  *  * 6n * | 0 1 1
. . o3x4o ♦  12 |   0  24 |  0   0  8  6 |  *  *  * n | 0 0 2
----------+-----+---------+--------------+------------+------
xno o3x . ♦  3n |  3n  3n |  3  3n  n  0 |  3  n  0 0 | 8 * *
xno . x4o ♦  4n |  4n  4n |  4  4n  0  n |  4  0  n 0 | * 6 *
x . o3x4o ♦  24 |  12  48 |  0  24 16 12 |  0  8  6 2 | * * n
```

```xno x3o3x   (n>2)

. . . . . | 12n |   2   2   2 |  1   4   4  1  2  1 |  2  2  2  4  2 1 | 1 2 1 2
----------+-----+-------------+---------------------+------------------+--------
x . . . . |   2 | 12n   *   * |  1   2   2  0  0  0 |  2  2  1  2  1 0 | 1 2 1 1
. . x . . |   2 |   * 12n   * |  0   2   0  1  1  0 |  1  0  2  2  0 1 | 1 1 0 2
. . . . x |   2 |   *   * 12n |  0   0   2  0  1  1 |  0  1  0  2  2 1 | 0 1 1 2
----------+-----+-------------+---------------------+------------------+--------
xno . . . |   n |   n   0   0 | 12   *   *  *  *  * |  2  2  0  0  0 0 | 1 2 1 0
x . x . . |   4 |   2   2   0 |  * 12n   *  *  *  * |  1  0  1  1  0 0 | 1 1 0 1
x . . . x |   4 |   2   0   2 |  *   * 12n  *  *  * |  0  1  0  1  1 0 | 0 1 1 1
. . x3o . |   3 |   0   3   0 |  *   *   * 4n  *  * |  0  0  2  0  0 1 | 1 0 0 2
. . x . x |   4 |   0   2   2 |  *   *   *  * 6n  * |  0  0  0  2  0 1 | 0 1 0 2
. . . o3x |   3 |   0   0   3 |  *   *   *  *  * 4n |  0  0  0  0  2 1 | 0 0 1 2
----------+-----+-------------+---------------------+------------------+--------
xno x . . ♦  2n |  2n   n   0 |  2   n   0  0  0  0 | 12  *  *  *  * * | 1 1 0 0
xno . . x ♦  2n |  2n   0   n |  2   0   n  0  0  0 |  * 12  *  *  * * | 0 1 1 0
x . x3o . ♦   6 |   3   6   0 |  0   3   0  2  0  0 |  *  * 4n  *  * * | 1 0 0 1
x . x . x ♦   8 |   4   4   4 |  0   2   2  0  2  0 |  *  *  * 6n  * * | 0 1 0 1
x . . o3x ♦   6 |   3   0   6 |  0   0   3  0  0  2 |  *  *  *  * 4n * | 0 0 1 1
. . x3o3x ♦  12 |   0  12  12 |  0   0   0  4  6  4 |  *  *  *  *  * n | 0 0 0 2
----------+-----+-------------+---------------------+------------------+--------
xno x3o . ♦  3n |  3n  3n   0 |  3  3n   0  n  0  0 |  3  0  n  0  0 0 | 4 * * *
xno x . x ♦  4n |  4n  2n  2n |  4  2n  2n  0  n  0 |  2  2  0  n  0 0 | * 6 * *
xno . o3x ♦  3n |  3n   0  3n |  3   0  3n  0  0  n |  0  3  0  0  n 0 | * * 4 *
x . x3o3x ♦  24 |  12  24  24 |  0  12  12  8 12  8 |  0  0  4  6  4 2 | * * * n
```