Acronym ...
Name dual of hexagonal prism,
hexgonal dipyramid
 
 ©
Vertex figure [t6], [T4]
Dihedral angles
  • at long edge:   arccos(-3/5) = 126.869898°
  • at short edge:   arccos(-3/5) = 126.869898°
Dual hexagonal prism
Face vector 8, 18, 12
Confer
more general:
m mNo  
variations:
uo oq6oo&#zh  
general polytopal classes:
Catalan polyhedra  
External
links
wikipedia   polytopewiki   mathworld  

The triangles {(t,T,T)} have vertex angles t = arccos(7/8) = 28.955024° resp. T = arccos(1/4) = 75.522488°.

Note that the term hexagonal dipyramid in general says nothing about the relative ratio of the edge sizes. Here the edge ratio is chosen such as to match their duality to the hexagonal prism.


Incidence matrix according to Dynkin symbol

m m6o =
oxo6ooo&#ut   → both heights = sqrt(3) = 1.732051

o..6o..    | 1 * * | 6 0 0 | 6 0  [t6]
.o.6.o.    | * 6 * | 1 2 1 | 2 2  [T4]
..o6..o    | * * 1 | 0 0 6 | 0 6  [t6]
-----------+-------+-------+----
oo.6oo.&#u | 1 1 0 | 6 * * | 2 0  u
.x. ...    | 0 2 0 | * 6 * | 1 1  x
.oo6.oo&#u | 0 1 1 | * * 6 | 0 2  u
-----------+-------+-------+----
ox. ...&#u | 1 2 0 | 2 1 0 | 6 *  {(t,T,T)}
.xo ...&#u | 0 2 1 | 0 1 2 | * 6  {(t,T,T)}

m m6o =
ao ox6oo&#zu   → height = 0
                   a = sqrt(12) = 3.464102

o. o.6o.    | 2 * |  6 0 |  6  [t6]
.o .o6.o    | * 6 |  2 2 |  4  [T4]
------------+-----+------+---
oo oo6oo&#u | 1 1 | 12 * |  2  u
.. .x ..    | 0 2 |  * 6 |  2  x
------------+-----+------+---
.. ox ..&#u | 1 2 |  2 1 | 12  {(t,T,T)}

© 2004-2025
top of page