Acronym | hasrid |
Name | hexagon - small-rhombicosidodecahedron duoprism |
Circumradius | sqrt[sqrt(5)+15/4] = 2.446644 |
Face vector | 360, 1080, 1152, 498, 68 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x6o x3o5x . . . . . | 360 | 2 2 2 | 1 4 4 1 2 1 | 2 2 2 4 2 1 | 1 2 1 2 ----------+-----+-------------+-----------------------+--------------------+----------- x . . . . | 2 | 360 * * | 1 2 2 0 0 0 | 2 2 1 2 1 0 | 1 2 1 1 . . x . . | 2 | * 360 * | 0 2 0 1 1 0 | 1 0 2 2 0 1 | 1 1 0 2 . . . . x | 2 | * * 360 | 0 0 2 0 1 1 | 0 1 0 2 2 1 | 0 1 1 2 ----------+-----+-------------+-----------------------+--------------------+----------- x6o . . . | 6 | 6 0 0 | 60 * * * * * | 2 2 0 0 0 0 | 1 2 1 0 x . x . . | 4 | 2 2 0 | * 360 * * * * | 1 0 1 1 0 0 | 1 1 0 1 x . . . x | 4 | 2 0 2 | * * 360 * * * | 0 1 0 1 1 0 | 0 1 1 1 . . x3o . | 3 | 0 3 0 | * * * 120 * * | 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 2 | * * * * 180 * | 0 0 0 2 0 1 | 0 1 0 2 . . . o5x | 5 | 0 0 5 | * * * * * 72 | 0 0 0 0 2 1 | 0 0 1 2 ----------+-----+-------------+-----------------------+--------------------+----------- x6o x . . ♦ 12 | 12 6 0 | 2 6 0 0 0 0 | 60 * * * * * | 1 1 0 0 x6o . . x ♦ 12 | 12 0 6 | 2 0 6 0 0 0 | * 60 * * * * | 0 1 1 0 x . x3o . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * 120 * * * | 1 0 0 1 x . x . x ♦ 8 | 4 4 4 | 0 2 2 0 2 0 | * * * 180 * * | 0 1 0 1 x . . o5x ♦ 10 | 5 0 10 | 0 0 5 0 0 2 | * * * * 72 * | 0 0 1 1 . . x3o5x ♦ 60 | 0 60 60 | 0 0 0 20 30 12 | * * * * * 6 | 0 0 0 2 ----------+-----+-------------+-----------------------+--------------------+----------- x6o x3o . ♦ 18 | 18 18 0 | 3 18 0 6 0 0 | 3 0 6 0 0 0 | 20 * * * x6o x . x ♦ 24 | 24 12 12 | 4 12 12 0 6 0 | 2 2 0 6 0 0 | * 30 * * x6o . o5x ♦ 30 | 30 0 30 | 5 0 30 0 0 6 | 0 5 0 0 6 0 | * * 12 * x . x3o5x ♦ 120 | 60 120 120 | 0 60 60 40 60 24 | 0 0 20 30 12 2 | * * * 6
x3x x3o5x . . . . . | 360 | 1 1 2 2 | 1 2 2 2 2 1 2 1 | 2 2 1 2 1 1 2 1 1 | 1 2 1 1 1 ----------+-----+-----------------+-------------------------------+---------------------------+------------- x . . . . | 2 | 180 * * * | 1 2 2 0 0 0 0 0 | 2 2 1 2 1 0 0 0 0 | 1 2 1 1 0 . x . . . | 2 | * 180 * * | 1 0 0 2 2 0 0 0 | 2 2 0 0 0 1 2 1 0 | 1 2 1 0 1 . . x . . | 2 | * * 360 * | 0 1 0 1 0 1 1 0 | 1 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . . x | 2 | * * * 360 | 0 0 1 0 1 0 1 1 | 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ----------+-----+-----------------+-------------------------------+---------------------------+------------- x3x . . . | 6 | 3 3 0 0 | 60 * * * * * * * | 2 2 0 0 0 0 0 0 0 | 1 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 180 * * * * * * | 1 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . . x | 4 | 2 0 0 2 | * * 180 * * * * * | 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x x . . | 4 | 0 2 2 0 | * * * 180 * * * * | 1 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . . x | 4 | 0 2 0 2 | * * * * 180 * * * | 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3o . | 3 | 0 0 3 0 | * * * * * 120 * * | 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 2 | * * * * * * 180 * | 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . o5x | 5 | 0 0 0 5 | * * * * * * * 72 | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ----------+-----+-----------------+-------------------------------+---------------------------+------------- x3x x . . ♦ 12 | 6 6 6 0 | 2 3 0 3 0 0 0 0 | 60 * * * * * * * * | 1 1 0 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 3 0 0 0 | * 60 * * * * * * * | 0 1 1 0 0 x . x3o . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 2 0 0 | * * 60 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 4 | 0 2 2 0 0 0 2 0 | * * * 90 * * * * * | 0 1 0 1 0 x . . o5x ♦ 10 | 5 0 0 10 | 0 0 5 0 0 0 0 2 | * * * * 36 * * * * | 0 0 1 1 0 . x x3o . ♦ 6 | 0 3 6 0 | 0 0 0 3 0 2 0 0 | * * * * * 60 * * * | 1 0 0 0 1 . x x . x ♦ 8 | 0 4 4 4 | 0 0 0 2 2 0 2 0 | * * * * * * 90 * * | 0 1 0 0 1 . x . o5x ♦ 10 | 0 5 0 10 | 0 0 0 0 5 0 0 2 | * * * * * * * 36 * | 0 0 1 0 1 . . x3o5x ♦ 60 | 0 0 60 60 | 0 0 0 0 0 20 30 12 | * * * * * * * * 6 | 0 0 0 1 1 ----------+-----+-----------------+-------------------------------+---------------------------+------------- x3x x3o . ♦ 18 | 9 9 18 0 | 3 9 0 9 0 6 0 0 | 3 0 3 0 0 3 0 0 0 | 20 * * * * x3x x . x ♦ 24 | 12 12 12 12 | 4 6 6 6 6 0 6 0 | 2 2 0 3 0 0 3 0 0 | * 30 * * * x3x . o5x ♦ 30 | 15 15 0 30 | 5 0 15 0 15 0 0 6 | 0 5 0 0 3 0 0 3 0 | * * 12 * * x . x3o5x ♦ 120 | 60 0 120 120 | 0 60 60 0 0 40 60 24 | 0 0 20 30 12 0 0 0 2 | * * * 3 * . x x3o5x ♦ 120 | 0 60 120 120 | 0 0 0 60 60 40 60 24 | 0 0 0 0 0 20 30 12 2 | * * * * 3
© 2004-2024 | top of page |