Acronym hasrid
Name hexagon - small-rhombicosidodecahedron duoprism
Circumradius sqrt[sqrt(5)+15/4] = 2.446644
Face vector 360, 1080, 1152, 498, 68
Confer
more general:
n,srid-dip  
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

x6o x3o5x

. . . . . | 360 |   2   2   2 |  1   4   4   1   2  1 |  2  2   2   4  2 1 |  1  2  1 2
----------+-----+-------------+-----------------------+--------------------+-----------
x . . . . |   2 | 360   *   * |  1   2   2   0   0  0 |  2  2   1   2  1 0 |  1  2  1 1
. . x . . |   2 |   * 360   * |  0   2   0   1   1  0 |  1  0   2   2  0 1 |  1  1  0 2
. . . . x |   2 |   *   * 360 |  0   0   2   0   1  1 |  0  1   0   2  2 1 |  0  1  1 2
----------+-----+-------------+-----------------------+--------------------+-----------
x6o . . . |   6 |   6   0   0 | 60   *   *   *   *  * |  2  2   0   0  0 0 |  1  2  1 0
x . x . . |   4 |   2   2   0 |  * 360   *   *   *  * |  1  0   1   1  0 0 |  1  1  0 1
x . . . x |   4 |   2   0   2 |  *   * 360   *   *  * |  0  1   0   1  1 0 |  0  1  1 1
. . x3o . |   3 |   0   3   0 |  *   *   * 120   *  * |  0  0   2   0  0 1 |  1  0  0 2
. . x . x |   4 |   0   2   2 |  *   *   *   * 180  * |  0  0   0   2  0 1 |  0  1  0 2
. . . o5x |   5 |   0   0   5 |  *   *   *   *   * 72 |  0  0   0   0  2 1 |  0  0  1 2
----------+-----+-------------+-----------------------+--------------------+-----------
x6o x . .   12 |  12   6   0 |  2   6   0   0   0  0 | 60  *   *   *  * * |  1  1  0 0
x6o . . x   12 |  12   0   6 |  2   0   6   0   0  0 |  * 60   *   *  * * |  0  1  1 0
x . x3o .    6 |   3   6   0 |  0   3   0   2   0  0 |  *  * 120   *  * * |  1  0  0 1
x . x . x    8 |   4   4   4 |  0   2   2   0   2  0 |  *  *   * 180  * * |  0  1  0 1
x . . o5x   10 |   5   0  10 |  0   0   5   0   0  2 |  *  *   *   * 72 * |  0  0  1 1
. . x3o5x   60 |   0  60  60 |  0   0   0  20  30 12 |  *  *   *   *  * 6 |  0  0  0 2
----------+-----+-------------+-----------------------+--------------------+-----------
x6o x3o .   18 |  18  18   0 |  3  18   0   6   0  0 |  3  0   6   0  0 0 | 20  *  * *
x6o x . x   24 |  24  12  12 |  4  12  12   0   6  0 |  2  2   0   6  0 0 |  * 30  * *
x6o . o5x   30 |  30   0  30 |  5   0  30   0   0  6 |  0  5   0   0  6 0 |  *  * 12 *
x . x3o5x  120 |  60 120 120 |  0  60  60  40  60 24 |  0  0  20  30 12 2 |  *  *  * 6

x3x x3o5x

. . . . . | 360 |   1   1   2   2 |  1   2   2   2   2   1   2  1 |  2  2  1  2  1  1  2  1 1 |  1  2  1 1 1
----------+-----+-----------------+-------------------------------+---------------------------+-------------
x . . . . |   2 | 180   *   *   * |  1   2   2   0   0   0   0  0 |  2  2  1  2  1  0  0  0 0 |  1  2  1 1 0
. x . . . |   2 |   * 180   *   * |  1   0   0   2   2   0   0  0 |  2  2  0  0  0  1  2  1 0 |  1  2  1 0 1
. . x . . |   2 |   *   * 360   * |  0   1   0   1   0   1   1  0 |  1  0  1  1  0  1  1  0 1 |  1  1  0 1 1
. . . . x |   2 |   *   *   * 360 |  0   0   1   0   1   0   1  1 |  0  1  0  1  1  0  1  1 1 |  0  1  1 1 1
----------+-----+-----------------+-------------------------------+---------------------------+-------------
x3x . . . |   6 |   3   3   0   0 | 60   *   *   *   *   *   *  * |  2  2  0  0  0  0  0  0 0 |  1  2  1 0 0
x . x . . |   4 |   2   0   2   0 |  * 180   *   *   *   *   *  * |  1  0  1  1  0  0  0  0 0 |  1  1  0 1 0
x . . . x |   4 |   2   0   0   2 |  *   * 180   *   *   *   *  * |  0  1  0  1  1  0  0  0 0 |  0  1  1 1 0
. x x . . |   4 |   0   2   2   0 |  *   *   * 180   *   *   *  * |  1  0  0  0  0  1  1  0 0 |  1  1  0 0 1
. x . . x |   4 |   0   2   0   2 |  *   *   *   * 180   *   *  * |  0  1  0  0  0  0  1  1 0 |  0  1  1 0 1
. . x3o . |   3 |   0   0   3   0 |  *   *   *   *   * 120   *  * |  0  0  1  0  0  1  0  0 1 |  1  0  0 1 1
. . x . x |   4 |   0   0   2   2 |  *   *   *   *   *   * 180  * |  0  0  0  1  0  0  1  0 1 |  0  1  0 1 1
. . . o5x |   5 |   0   0   0   5 |  *   *   *   *   *   *   * 72 |  0  0  0  0  1  0  0  1 1 |  0  0  1 1 1
----------+-----+-----------------+-------------------------------+---------------------------+-------------
x3x x . .   12 |   6   6   6   0 |  2   3   0   3   0   0   0  0 | 60  *  *  *  *  *  *  * * |  1  1  0 0 0
x3x . . x   12 |   6   6   0   6 |  2   0   3   0   3   0   0  0 |  * 60  *  *  *  *  *  * * |  0  1  1 0 0
x . x3o .    6 |   3   0   6   0 |  0   3   0   0   0   2   0  0 |  *  * 60  *  *  *  *  * * |  1  0  0 1 0
x . x . x    8 |   4   0   4   4 |  0   2   2   0   0   0   2  0 |  *  *  * 90  *  *  *  * * |  0  1  0 1 0
x . . o5x   10 |   5   0   0  10 |  0   0   5   0   0   0   0  2 |  *  *  *  * 36  *  *  * * |  0  0  1 1 0
. x x3o .    6 |   0   3   6   0 |  0   0   0   3   0   2   0  0 |  *  *  *  *  * 60  *  * * |  1  0  0 0 1
. x x . x    8 |   0   4   4   4 |  0   0   0   2   2   0   2  0 |  *  *  *  *  *  * 90  * * |  0  1  0 0 1
. x . o5x   10 |   0   5   0  10 |  0   0   0   0   5   0   0  2 |  *  *  *  *  *  *  * 36 * |  0  0  1 0 1
. . x3o5x   60 |   0   0  60  60 |  0   0   0   0   0  20  30 12 |  *  *  *  *  *  *  *  * 6 |  0  0  0 1 1
----------+-----+-----------------+-------------------------------+---------------------------+-------------
x3x x3o .   18 |   9   9  18   0 |  3   9   0   9   0   6   0  0 |  3  0  3  0  0  3  0  0 0 | 20  *  * * *
x3x x . x   24 |  12  12  12  12 |  4   6   6   6   6   0   6  0 |  2  2  0  3  0  0  3  0 0 |  * 30  * * *
x3x . o5x   30 |  15  15   0  30 |  5   0  15   0  15   0   0  6 |  0  5  0  0  3  0  0  3 0 |  *  * 12 * *
x . x3o5x  120 |  60   0 120 120 |  0  60  60   0   0  40  60 24 |  0  0 20 30 12  0  0  0 2 |  *  *  * 3 *
. x x3o5x  120 |   0  60 120 120 |  0   0   0  60  60  40  60 24 |  0  0  0  0  0 20 30 12 2 |  *  *  * * 3

© 2004-2025
top of page