Acronym | gisdipthi |
Name | great stellated dipental trishecatonicosachoron |
Circumradius | sqrt[4-sqrt(5)] = 1.328131 |
Colonel of regiment | gidipthi |
Face vector | 1440, 7200, 4560, 360 |
Confer |
|
External links |
As abstract polytope gisdipthi is isomorphic to sisdipthi, thereby interchanging pentagrams and pentagons and replacing the decagrams by decagons, respectively gike by ike, gad by sissid, and gidditdid by sidditdid.
Further it is isomorphic to gidipthi, thereby likewise interchanging pentagons and pentagrams, but maintaining the decagrams, respectively replacing gike by ike, gad by sissid, and gidditdid by gaddid.
Finally it is isomorphic to sidipthi, thereby maintaining pentagons and pentagrams, but replacing the decagrams by decagons, respectively replacing gidditdid by saddid.
Incidence matrix according to Dynkin symbol
o5/2o3x5/3x5*b . . . . | 1440 | 5 5 | 5 5 5 | 1 1 5 ---------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 ---------------+------+-----------+---------------+------------ . o3x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 ---------------+------+-----------+---------------+------------ o5/2o3x . ♦ 12 | 30 0 | 20 0 0 | 120 * * o5/2o . x5*b ♦ 12 | 0 30 | 0 12 0 | * 120 * . o3x5/3x5*b ♦ 60 | 60 60 | 20 12 12 | * * 120
o5/2o3/2x5/3x5/4*b . . . . | 1440 | 5 5 | 5 5 5 | 1 1 5 -------------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 -------------------+------+-----------+---------------+------------ . o3/2x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5/4*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 -------------------+------+-----------+---------------+------------ o5/2o3/2x . ♦ 12 | 30 0 | 20 0 0 | 120 * * o5/2o . x5/4*b ♦ 12 | 0 30 | 0 12 0 | * 120 * . o3/2x5/3x5/4*b ♦ 60 | 60 60 | 20 12 12 | * * 120
o5/3o3x5/3x5*b . . . . | 1440 | 5 5 | 5 5 5 | 1 1 5 ---------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 ---------------+------+-----------+---------------+------------ . o3x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 ---------------+------+-----------+---------------+------------ o5/3o3x . ♦ 12 | 30 0 | 20 0 0 | 120 * * o5/3o . x5*b ♦ 12 | 0 30 | 0 12 0 | * 120 * . o3x5/3x5*b ♦ 60 | 60 60 | 20 12 12 | * * 120
o5/3o3/2x5/3x5/4*b . . . . | 1440 | 5 5 | 5 5 5 | 1 1 5 -------------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 -------------------+------+-----------+---------------+------------ . o3/2x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5/4*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 -------------------+------+-----------+---------------+------------ o5/3o3/2x . ♦ 12 | 30 0 | 20 0 0 | 120 * * o5/3o . x5/4*b ♦ 12 | 0 30 | 0 12 0 | * 120 * . o3/2x5/3x5/4*b ♦ 60 | 60 60 | 20 12 12 | * * 120
© 2004-2024 | top of page |