Acronym gid tipathi
Name great ditrigonal prismatotriakishecatonicosachoron
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: gaquatid gidditdid giid ti toe trip gid tipathi 120 120 0 120 0 1200 giphixhi 0 0 120 120 600 1200
& others)
External

As abstract polytope gid tipathi is isomorphic to sid tipathi, thereby replacing pentagons by pentagrams and decagrams by decagons, respectively gaquatid by grid, ti by tiggy, and gidditdid by sidditdid.

Incidence matrix according to Dynkin symbol

```x3x5o3x5/3*b

. . . .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2    1   1
-------------+------+----------------+--------------------------+-----------------
x . . .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2    1   0
. x . .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1    0   1
. . . x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1    1   1
-------------+------+----------------+--------------------------+-----------------
x3x . .      |    6 |    3    3    0 | 2400    *    *    *    * |   1   1    0   0
x . . x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1    1   0
. x5o .      |    5 |    0    5    0 |    *    * 1440    *    * |   1   0    0   1
. x . x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1    0   1
. . o3x      |    3 |    0    0    3 |    *    *    *    * 2400 |   0   0    1   1
-------------+------+----------------+--------------------------+-----------------
x3x5o .      ♦   60 |   30   60    0 |   20    0   12    0    0 | 120   *    *   *
x3x . x5/3*b ♦  120 |   60   60   60 |   20   30    0   12    0 |   * 120    *   *
x . o3x      ♦    6 |    3    0    6 |    0    3    0    0    2 |   *   * 1200   *
. x5o3x5/3*b ♦   60 |    0   60   60 |    0    0   12   12   20 |   *   *    * 120
```

```x3x5/4o3/2x5/3*b

. .   .   .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2    1   1
-----------------+------+----------------+--------------------------+-----------------
x .   .   .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2    1   0
. x   .   .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1    0   1
. .   .   x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1    1   1
-----------------+------+----------------+--------------------------+-----------------
x3x   .   .      |    6 |    3    3    0 | 2400    *    *    *    * |   1   1    0   0
x .   .   x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1    1   0
. x5/4o   .      |    5 |    0    5    0 |    *    * 1440    *    * |   1   0    0   1
. x   .   x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1    0   1
. .   o3/2x      |    3 |    0    0    3 |    *    *    *    * 2400 |   0   0    1   1
-----------------+------+----------------+--------------------------+-----------------
x3x5/4o   .      ♦   60 |   30   60    0 |   20    0   12    0    0 | 120   *    *   *
x3x   .   x5/3*b ♦  120 |   60   60   60 |   20   30    0   12    0 |   * 120    *   *
x .   o3/2x      ♦    6 |    3    0    6 |    0    3    0    0    2 |   *   * 1200   *
. x5/4o3/2x5/3*b ♦   60 |    0   60   60 |    0    0   12   12   20 |   *   *    * 120
```