Acronym | gibrid (old: gadrid) |
Name |
great birhombated dodecateron, bicantitruncated hexateron |
Field of sections |
© |
Circumradius | sqrt(19)/2 = 2.179449 |
Vertex figure |
© © |
Face vector | 180, 450, 420, 180, 32 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
o3x3x3x3o . . . . . | 180 | 2 1 2 | 1 2 4 2 1 | 1 2 4 2 1 | 2 1 2 ----------+-----+------------+-----------------+----------------+------- . x . . . | 2 | 180 * * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . x . . | 2 | * 90 * | 0 2 0 2 0 | 1 0 4 0 1 | 2 0 2 . . . x . | 2 | * * 180 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ----------+-----+------------+-----------------+----------------+------- o3x . . . | 3 | 3 0 0 | 60 * * * * | 1 2 0 0 0 | 2 1 0 . x3x . . | 6 | 3 3 0 | * 60 * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 0 2 | * * 180 * * | 0 1 1 1 0 | 1 1 1 . . x3x . | 6 | 0 3 3 | * * * 60 * | 0 0 2 0 1 | 1 0 2 . . . x3o | 3 | 0 0 3 | * * * * 60 | 0 0 0 2 1 | 0 1 2 ----------+-----+------------+-----------------+----------------+------- o3x3x . . ♦ 12 | 12 6 0 | 4 4 0 0 0 | 15 * * * * | 2 0 0 o3x . x . ♦ 6 | 6 0 3 | 2 0 3 0 0 | * 60 * * * | 1 1 0 . x3x3x . ♦ 24 | 12 12 12 | 0 4 6 4 0 | * * 30 * * | 1 0 1 . x . x3o ♦ 6 | 3 0 6 | 0 0 3 0 2 | * * * 60 * | 0 1 1 . . x3x3o ♦ 12 | 0 6 12 | 0 0 0 4 4 | * * * * 15 | 0 0 2 ----------+-----+------------+-----------------+----------------+------- o3x3x3x . ♦ 60 | 60 30 30 | 20 20 30 10 0 | 5 10 5 0 0 | 6 * * o3x . x3o ♦ 9 | 9 0 9 | 3 0 9 0 3 | 0 3 0 3 0 | * 20 * . x3x3x3o ♦ 60 | 30 30 60 | 0 10 30 20 20 | 0 0 5 10 5 | * * 6
or . . . . . | 180 | 4 1 | 2 4 4 | 2 4 4 | 4 1 -------------+-----+--------+-------------+-----------+------ . x . . . & | 2 | 360 * | 1 1 2 | 1 3 2 | 3 1 . . x . . | 2 | * 90 | 0 4 0 | 2 0 4 | 4 0 -------------+-----+--------+-------------+-----------+------ o3x . . . & | 3 | 3 0 | 120 * * | 1 2 0 | 2 1 . x3x . . & | 6 | 3 3 | * 120 * | 1 0 2 | 3 0 . x . x . | 4 | 4 0 | * * 180 | 0 2 1 | 2 1 -------------+-----+--------+-------------+-----------+------ o3x3x . . & ♦ 12 | 12 6 | 4 4 0 | 30 * * | 2 0 o3x . x . & ♦ 6 | 9 0 | 2 0 3 | * 120 * | 1 1 . x3x3x . ♦ 24 | 24 12 | 0 8 6 | * * 30 | 2 0 -------------+-----+--------+-------------+-----------+------ o3x3x3x . & ♦ 60 | 90 30 | 20 30 30 | 5 10 5 | 12 * o3x . x3o ♦ 9 | 18 0 | 6 0 9 | 0 6 0 | * 20
o3/2x3x3x3o . . . . . | 180 | 2 1 2 | 1 2 4 2 1 | 1 2 4 2 1 | 2 1 2 ------------+-----+------------+-----------------+----------------+------- . x . . . | 2 | 180 * * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . x . . | 2 | * 90 * | 0 2 0 2 0 | 1 0 4 0 1 | 2 0 2 . . . x . | 2 | * * 180 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ------------+-----+------------+-----------------+----------------+------- o3/2x . . . | 3 | 3 0 0 | 60 * * * * | 1 2 0 0 0 | 2 1 0 . x3x . . | 6 | 3 3 0 | * 60 * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 0 2 | * * 180 * * | 0 1 1 1 0 | 1 1 1 . . x3x . | 6 | 0 3 3 | * * * 60 * | 0 0 2 0 1 | 1 0 2 . . . x3o | 3 | 0 0 3 | * * * * 60 | 0 0 0 2 1 | 0 1 2 ------------+-----+------------+-----------------+----------------+------- o3/2x3x . . ♦ 12 | 12 6 0 | 4 4 0 0 0 | 15 * * * * | 2 0 0 o3/2x . x . ♦ 6 | 6 0 3 | 2 0 3 0 0 | * 60 * * * | 1 1 0 . x3x3x . ♦ 24 | 12 12 12 | 0 4 6 4 0 | * * 30 * * | 1 0 1 . x . x3o ♦ 6 | 3 0 6 | 0 0 3 0 2 | * * * 60 * | 0 1 1 . . x3x3o ♦ 12 | 0 6 12 | 0 0 0 4 4 | * * * * 15 | 0 0 2 ------------+-----+------------+-----------------+----------------+------- o3/2x3x3x . ♦ 60 | 60 30 30 | 20 20 30 10 0 | 5 10 5 0 0 | 6 * * o3/2x . x3o ♦ 9 | 9 0 9 | 3 0 9 0 3 | 0 3 0 3 0 | * 20 * . x3x3x3o ♦ 60 | 30 30 60 | 0 10 30 20 20 | 0 0 5 10 5 | * * 6
xooo3xuxx3xxux3ooox&#xt → all heights = sqrt(2/5) = 0.632456 o...3o...3o...3o... & | 120 * | 1 1 2 1 0 0 | 1 2 2 1 1 1 2 0 | 2 1 1 1 2 2 1 | 1 3 1 .o..3.o..3.o..3.o.. & | * 60 | 0 0 0 2 2 1 | 0 0 0 0 1 4 4 1 | 0 0 0 2 2 4 2 | 0 4 1 --------------------------+--------+---------------------+--------------------------+----------------------+-------- x... .... .... .... & | 2 0 | 60 * * * * * | 1 2 0 0 1 0 0 0 | 2 1 0 1 2 0 0 | 1 2 1 .... x... .... .... & | 2 0 | * 60 * * * * | 1 0 2 0 0 1 0 0 | 2 0 1 1 0 2 0 | 1 3 0 .... .... x... .... & | 2 0 | * * 120 * * * | 0 1 1 1 0 0 1 0 | 1 1 1 0 1 1 1 | 1 2 1 oo..3oo..3oo..3oo..&#x & | 1 1 | * * * 120 * * | 0 0 0 0 1 1 2 0 | 0 0 0 1 2 2 1 | 0 3 1 .... .... .x.. .... & | 0 2 | * * * * 60 * | 0 0 0 0 0 1 2 1 | 0 0 0 1 1 2 2 | 0 3 1 .oo.3.oo.3.oo.3.oo.&#x | 0 2 | * * * * * 30 | 0 0 0 0 0 4 0 0 | 0 0 0 2 0 4 0 | 0 4 0 --------------------------+--------+---------------------+--------------------------+----------------------+-------- x...3x... .... .... & | 6 0 | 3 3 0 0 0 0 | 20 * * * * * * * | 2 0 0 1 0 0 0 | 1 2 0 x... .... x... .... & | 4 0 | 2 0 2 0 0 0 | * 60 * * * * * * | 1 1 0 0 1 0 0 | 1 1 1 .... x...3x... .... & | 6 0 | 0 3 3 0 0 0 | * * 40 * * * * * | 1 0 1 0 0 1 0 | 1 2 0 .... .... x...3o... & | 3 0 | 0 0 3 0 0 0 | * * * 40 * * * * | 0 1 1 0 0 0 1 | 1 1 1 xo.. .... .... ....&#x & | 2 1 | 1 0 0 2 0 0 | * * * * 60 * * * | 0 0 0 1 2 0 0 | 0 2 1 .... xux. .... ....&#xt & | 2 4 | 0 1 0 2 1 2 | * * * * * 60 * * | 0 0 0 1 0 2 0 | 0 3 0 .... .... xx.. ....&#x & | 2 2 | 0 0 1 2 1 0 | * * * * * * 120 * | 0 0 0 0 1 1 1 | 0 2 1 .... .... .x..3.o.. & | 0 3 | 0 0 0 0 3 0 | * * * * * * * 20 | 0 0 0 1 0 0 2 | 0 2 1 --------------------------+--------+---------------------+--------------------------+----------------------+-------- x...3x...3x... .... & ♦ 24 0 | 12 12 12 0 0 0 | 4 6 4 0 0 0 0 0 | 10 * * * * * * | 1 1 0 x... .... x...3o... & ♦ 6 0 | 3 0 6 0 0 0 | 0 3 0 2 0 0 0 0 | * 20 * * * * * | 1 0 1 .... x...3x...3o... & ♦ 12 0 | 0 6 12 0 0 0 | 0 0 4 4 0 0 0 0 | * * 10 * * * * | 1 1 0 xoo.3xux. .... ....&#xt & ♦ 6 6 | 3 3 0 6 3 3 | 1 0 0 0 3 3 0 1 | * * * 20 * * * | 0 2 0 xo.. .... xx.. ....&#x & ♦ 4 2 | 2 0 2 4 1 0 | 0 1 0 0 2 0 2 0 | * * * * 60 * * | 0 1 1 .... xuxx3xxux ....&#xt ♦ 12 12 | 0 6 6 12 6 6 | 0 0 2 0 0 6 6 0 | * * * * * 20 * | 0 2 0 .... .... xx..3oo..&#x & ♦ 3 3 | 0 0 3 3 3 0 | 0 0 0 1 0 0 3 1 | * * * * * * 40 | 0 1 1 --------------------------+--------+---------------------+--------------------------+----------------------+-------- x...3x...3x...3o... & ♦ 60 0 | 30 30 60 0 0 0 | 10 30 20 20 0 0 0 0 | 5 10 5 0 0 0 0 | 2 * * xooo3xuxx3xxux ....&#xt & ♦ 36 24 | 12 18 24 36 18 12 | 4 6 8 4 12 18 24 4 | 1 0 1 4 6 4 4 | * 10 * xo.. .... xx..3oo..&#x & ♦ 6 3 | 3 0 6 6 3 0 | 0 3 0 2 3 0 6 1 | 0 1 0 0 3 0 2 | * * 20
© 2004-2024 | top of page |