Acronym gibrid (old: gadrid)
Name great birhombated dodecateron,
bicantitruncated hexateron
Field of sections
 ©
Circumradius sqrt(19)/2 = 2.179449
Vertex figure
 ©    ©
Face vector 180, 450, 420, 180, 32
Confer
general polytopal classes:
Wythoffian polytera   lace simplices  
External
links
hedrondude   wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

o3x3x3x3o

. . . . . | 180 |   2  1   2 |  1  2   4  2  1 |  1  2  4  2  1 | 2  1 2
----------+-----+------------+-----------------+----------------+-------
. x . . . |   2 | 180  *   * |  1  1   2  0  0 |  1  2  2  1  0 | 2  1 1
. . x . . |   2 |   * 90   * |  0  2   0  2  0 |  1  0  4  0  1 | 2  0 2
. . . x . |   2 |   *  * 180 |  0  0   2  1  1 |  0  1  2  2  1 | 1  1 2
----------+-----+------------+-----------------+----------------+-------
o3x . . . |   3 |   3  0   0 | 60  *   *  *  * |  1  2  0  0  0 | 2  1 0
. x3x . . |   6 |   3  3   0 |  * 60   *  *  * |  1  0  2  0  0 | 2  0 1
. x . x . |   4 |   2  0   2 |  *  * 180  *  * |  0  1  1  1  0 | 1  1 1
. . x3x . |   6 |   0  3   3 |  *  *   * 60  * |  0  0  2  0  1 | 1  0 2
. . . x3o |   3 |   0  0   3 |  *  *   *  * 60 |  0  0  0  2  1 | 0  1 2
----------+-----+------------+-----------------+----------------+-------
o3x3x . .   12 |  12  6   0 |  4  4   0  0  0 | 15  *  *  *  * | 2  0 0
o3x . x .    6 |   6  0   3 |  2  0   3  0  0 |  * 60  *  *  * | 1  1 0
. x3x3x .   24 |  12 12  12 |  0  4   6  4  0 |  *  * 30  *  * | 1  0 1
. x . x3o    6 |   3  0   6 |  0  0   3  0  2 |  *  *  * 60  * | 0  1 1
. . x3x3o   12 |   0  6  12 |  0  0   0  4  4 |  *  *  *  * 15 | 0  0 2
----------+-----+------------+-----------------+----------------+-------
o3x3x3x .   60 |  60 30  30 | 20 20  30 10  0 |  5 10  5  0  0 | 6  * *
o3x . x3o    9 |   9  0   9 |  3  0   9  0  3 |  0  3  0  3  0 | * 20 *
. x3x3x3o   60 |  30 30  60 |  0 10  30 20 20 |  0  0  5 10  5 | *  * 6
or
. . . . .    | 180 |   4  1 |   2   4   4 |  2   4  4 |  4  1
-------------+-----+--------+-------------+-----------+------
. x . . .  & |   2 | 360  * |   1   1   2 |  1   3  2 |  3  1
. . x . .    |   2 |   * 90 |   0   4   0 |  2   0  4 |  4  0
-------------+-----+--------+-------------+-----------+------
o3x . . .  & |   3 |   3  0 | 120   *   * |  1   2  0 |  2  1
. x3x . .  & |   6 |   3  3 |   * 120   * |  1   0  2 |  3  0
. x . x .    |   4 |   4  0 |   *   * 180 |  0   2  1 |  2  1
-------------+-----+--------+-------------+-----------+------
o3x3x . .  &   12 |  12  6 |   4   4   0 | 30   *  * |  2  0
o3x . x .  &    6 |   9  0 |   2   0   3 |  * 120  * |  1  1
. x3x3x .      24 |  24 12 |   0   8   6 |  *   * 30 |  2  0
-------------+-----+--------+-------------+-----------+------
o3x3x3x .  &   60 |  90 30 |  20  30  30 |  5  10  5 | 12  *
o3x . x3o       9 |  18  0 |   6   0   9 |  0   6  0 |  * 20

o3/2x3x3x3o

.   . . . . | 180 |   2  1   2 |  1  2   4  2  1 |  1  2  4  2  1 | 2  1 2
------------+-----+------------+-----------------+----------------+-------
.   x . . . |   2 | 180  *   * |  1  1   2  0  0 |  1  2  2  1  0 | 2  1 1
.   . x . . |   2 |   * 90   * |  0  2   0  2  0 |  1  0  4  0  1 | 2  0 2
.   . . x . |   2 |   *  * 180 |  0  0   2  1  1 |  0  1  2  2  1 | 1  1 2
------------+-----+------------+-----------------+----------------+-------
o3/2x . . . |   3 |   3  0   0 | 60  *   *  *  * |  1  2  0  0  0 | 2  1 0
.   x3x . . |   6 |   3  3   0 |  * 60   *  *  * |  1  0  2  0  0 | 2  0 1
.   x . x . |   4 |   2  0   2 |  *  * 180  *  * |  0  1  1  1  0 | 1  1 1
.   . x3x . |   6 |   0  3   3 |  *  *   * 60  * |  0  0  2  0  1 | 1  0 2
.   . . x3o |   3 |   0  0   3 |  *  *   *  * 60 |  0  0  0  2  1 | 0  1 2
------------+-----+------------+-----------------+----------------+-------
o3/2x3x . .   12 |  12  6   0 |  4  4   0  0  0 | 15  *  *  *  * | 2  0 0
o3/2x . x .    6 |   6  0   3 |  2  0   3  0  0 |  * 60  *  *  * | 1  1 0
.   x3x3x .   24 |  12 12  12 |  0  4   6  4  0 |  *  * 30  *  * | 1  0 1
.   x . x3o    6 |   3  0   6 |  0  0   3  0  2 |  *  *  * 60  * | 0  1 1
.   . x3x3o   12 |   0  6  12 |  0  0   0  4  4 |  *  *  *  * 15 | 0  0 2
------------+-----+------------+-----------------+----------------+-------
o3/2x3x3x .   60 |  60 30  30 | 20 20  30 10  0 |  5 10  5  0  0 | 6  * *
o3/2x . x3o    9 |   9  0   9 |  3  0   9  0  3 |  0  3  0  3  0 | * 20 *
.   x3x3x3o   60 |  30 30  60 |  0 10  30 20 20 |  0  0  5 10  5 | *  * 6

xooo3xuxx3xxux3ooox&#xt   → all heights = sqrt(2/5) = 0.632456

o...3o...3o...3o...     & | 120  * |  1  1   2   1  0  0 |  1  2  2  1  1  1   2  0 |  2  1  1  1  2  2  1 | 1  3  1
.o..3.o..3.o..3.o..     & |   * 60 |  0  0   0   2  2  1 |  0  0  0  0  1  4   4  1 |  0  0  0  2  2  4  2 | 0  4  1
--------------------------+--------+---------------------+--------------------------+----------------------+--------
x... .... .... ....     & |   2  0 | 60  *   *   *  *  * |  1  2  0  0  1  0   0  0 |  2  1  0  1  2  0  0 | 1  2  1
.... x... .... ....     & |   2  0 |  * 60   *   *  *  * |  1  0  2  0  0  1   0  0 |  2  0  1  1  0  2  0 | 1  3  0
.... .... x... ....     & |   2  0 |  *  * 120   *  *  * |  0  1  1  1  0  0   1  0 |  1  1  1  0  1  1  1 | 1  2  1
oo..3oo..3oo..3oo..&#x  & |   1  1 |  *  *   * 120  *  * |  0  0  0  0  1  1   2  0 |  0  0  0  1  2  2  1 | 0  3  1
.... .... .x.. ....     & |   0  2 |  *  *   *   * 60  * |  0  0  0  0  0  1   2  1 |  0  0  0  1  1  2  2 | 0  3  1
.oo.3.oo.3.oo.3.oo.&#x    |   0  2 |  *  *   *   *  * 30 |  0  0  0  0  0  4   0  0 |  0  0  0  2  0  4  0 | 0  4  0
--------------------------+--------+---------------------+--------------------------+----------------------+--------
x...3x... .... ....     & |   6  0 |  3  3   0   0  0  0 | 20  *  *  *  *  *   *  * |  2  0  0  1  0  0  0 | 1  2  0
x... .... x... ....     & |   4  0 |  2  0   2   0  0  0 |  * 60  *  *  *  *   *  * |  1  1  0  0  1  0  0 | 1  1  1
.... x...3x... ....     & |   6  0 |  0  3   3   0  0  0 |  *  * 40  *  *  *   *  * |  1  0  1  0  0  1  0 | 1  2  0
.... .... x...3o...     & |   3  0 |  0  0   3   0  0  0 |  *  *  * 40  *  *   *  * |  0  1  1  0  0  0  1 | 1  1  1
xo.. .... .... ....&#x  & |   2  1 |  1  0   0   2  0  0 |  *  *  *  * 60  *   *  * |  0  0  0  1  2  0  0 | 0  2  1
.... xux. .... ....&#xt & |   2  4 |  0  1   0   2  1  2 |  *  *  *  *  * 60   *  * |  0  0  0  1  0  2  0 | 0  3  0
.... .... xx.. ....&#x  & |   2  2 |  0  0   1   2  1  0 |  *  *  *  *  *  * 120  * |  0  0  0  0  1  1  1 | 0  2  1
.... .... .x..3.o..     & |   0  3 |  0  0   0   0  3  0 |  *  *  *  *  *  *   * 20 |  0  0  0  1  0  0  2 | 0  2  1
--------------------------+--------+---------------------+--------------------------+----------------------+--------
x...3x...3x... ....     &   24  0 | 12 12  12   0  0  0 |  4  6  4  0  0  0   0  0 | 10  *  *  *  *  *  * | 1  1  0
x... .... x...3o...     &    6  0 |  3  0   6   0  0  0 |  0  3  0  2  0  0   0  0 |  * 20  *  *  *  *  * | 1  0  1
.... x...3x...3o...     &   12  0 |  0  6  12   0  0  0 |  0  0  4  4  0  0   0  0 |  *  * 10  *  *  *  * | 1  1  0
xoo.3xux. .... ....&#xt &    6  6 |  3  3   0   6  3  3 |  1  0  0  0  3  3   0  1 |  *  *  * 20  *  *  * | 0  2  0
xo.. .... xx.. ....&#x  &    4  2 |  2  0   2   4  1  0 |  0  1  0  0  2  0   2  0 |  *  *  *  * 60  *  * | 0  1  1
.... xuxx3xxux ....&#xt     12 12 |  0  6   6  12  6  6 |  0  0  2  0  0  6   6  0 |  *  *  *  *  * 20  * | 0  2  0
.... .... xx..3oo..&#x  &    3  3 |  0  0   3   3  3  0 |  0  0  0  1  0  0   3  1 |  *  *  *  *  *  * 40 | 0  1  1
--------------------------+--------+---------------------+--------------------------+----------------------+--------
x...3x...3x...3o...     &   60  0 | 30 30  60   0  0  0 | 10 30 20 20  0  0   0  0 |  5 10  5  0  0  0  0 | 2  *  *
xooo3xuxx3xxux ....&#xt &   36 24 | 12 18  24  36 18 12 |  4  6  8  4 12 18  24  4 |  1  0  1  4  6  4  4 | * 10  *
xo.. .... xx..3oo..&#x  &    6  3 |  3  0   6   6  3  0 |  0  3  0  2  3  0   6  1 |  0  1  0  0  3  0  2 | *  * 20

© 2004-2025
top of page