Acronym gaqrich
Name great quasirhombated cubic honeycomb

As abstract polytope gaqrich is isomorphic to grich, thereby replacing octagrams by octagons, resp. quitco by girco.


Incidence matrix according to Dynkin symbol

x4/3x3x4o   (N → ∞)

.   . . . | 24N |   1   1   2 |  1   2  2  1 | 2  1 1
----------+-----+-------------+--------------+-------
x   . . . |   2 | 12N   *   * |  1   2  0  0 | 2  1 0
.   x . . |   2 |   * 12N   * |  1   0  2  0 | 2  0 1
.   . x . |   2 |   *   * 24N |  0   1  1  1 | 1  1 1
----------+-----+-------------+--------------+-------
x4/3x . . |   8 |   4   4   0 | 3N   *  *  * | 2  0 0
x   . x . |   4 |   2   0   2 |  * 12N  *  * | 1  1 0
.   x3x . |   6 |   0   3   3 |  *   * 8N  * | 1  0 1
.   . x4o |   4 |   0   0   4 |  *   *  * 6N | 0  1 1
----------+-----+-------------+--------------+-------
x4/3x3x .   48 |  24  24  24 |  6  12  8  0 | N  * *
x   . x4o    8 |   4   0   8 |  0   4  0  2 | * 3N *
.   x3x4o   24 |   0  12  24 |  0   0  8  6 | *  * N

x4/3x3x4/3o   (N → ∞)

.   . .   . | 24N |   1   1   2 |  1   2  2  1 | 2  1 1
------------+-----+-------------+--------------+-------
x   . .   . |   2 | 12N   *   * |  1   2  0  0 | 2  1 0
.   x .   . |   2 |   * 12N   * |  1   0  2  0 | 2  0 1
.   . x   . |   2 |   *   * 24N |  0   1  1  1 | 1  1 1
------------+-----+-------------+--------------+-------
x4/3x .   . |   8 |   4   4   0 | 3N   *  *  * | 2  0 0
x   . x   . |   4 |   2   0   2 |  * 12N  *  * | 1  1 0
.   x3x   . |   6 |   0   3   3 |  *   * 8N  * | 1  0 1
.   . x4/3o |   4 |   0   0   4 |  *   *  * 6N | 0  1 1
------------+-----+-------------+--------------+-------
x4/3x3x   .   48 |  24  24  24 |  6  12  8  0 | N  * *
x   . x4/3o    8 |   4   0   8 |  0   4  0  2 | * 3N *
.   x3x4/3o   24 |   0  12  24 |  0   0  8  6 | *  * N

x3x3x *b4/3x   (N → ∞)

. . .      . | 48N |   1   1   1   1 |  1   1   1  1  1   1 |  1 1  1 1
-------------+-----+-----------------+----------------------+----------
x . .      . |   2 | 24N   *   *   * |  1   1   1  0  0   0 |  1 1  1 0
. x .      . |   2 |   * 24N   *   * |  1   0   0  1  1   0 |  1 1  0 1
. . x      . |   2 |   *   * 24N   * |  0   1   0  1  0   1 |  1 0  1 1
. . .      x |   2 |   *   *   * 24N |  0   0   1  0  1   1 |  0 1  1 1
-------------+-----+-----------------+----------------------+----------
x3x .      . |   6 |   3   3   0   0 | 8N   *   *  *  *   * |  1 1  0 0
x . x      . |   4 |   2   0   2   0 |  * 12N   *  *  *   * |  1 0  1 0
x . .      x |   4 |   2   0   0   2 |  *   * 12N  *  *   * |  0 1  1 0
. x3x      . |   6 |   0   3   3   0 |  *   *   * 8N  *   * |  1 0  0 1
. x . *b4/3x |   8 |   0   4   0   4 |  *   *   *  * 6N   * |  0 1  0 1
. . x      x |   4 |   0   0   2   2 |  *   *   *  *  * 12N |  0 0  1 1
-------------+-----+-----------------+----------------------+----------
x3x3x      .   24 |  12  12  12   0 |  4   6   0  4  0   0 | 2N *  * *
x3x . *b4/3x   48 |  24  24   0  24 |  8   0  12  0  6   0 |  * N  * *
x . x      x    8 |   4   0   4   4 |  0   2   2  0  0   2 |  * * 6N *
. x3x *b4/3x   48 |   0  24  24  24 |  0   0   0  8  6  12 |  * *  * N

© 2004-2024
top of page