Acronym | gaqrich |
Name | great quasirhombated cubic honeycomb |
External links |
As abstract polytope gaqrich is isomorphic to grich, thereby replacing octagrams by octagons, resp. quitco by girco.
Incidence matrix according to Dynkin symbol
x4/3x3x4o (N → ∞) . . . . | 24N | 1 1 2 | 1 2 2 1 | 2 1 1 ----------+-----+-------------+--------------+------- x . . . | 2 | 12N * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 12N * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 24N | 0 1 1 1 | 1 1 1 ----------+-----+-------------+--------------+------- x4/3x . . | 8 | 4 4 0 | 3N * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 12N * * | 1 1 0 . x3x . | 6 | 0 3 3 | * * 8N * | 1 0 1 . . x4o | 4 | 0 0 4 | * * * 6N | 0 1 1 ----------+-----+-------------+--------------+------- x4/3x3x . ♦ 48 | 24 24 24 | 6 12 8 0 | N * * x . x4o ♦ 8 | 4 0 8 | 0 4 0 2 | * 3N * . x3x4o ♦ 24 | 0 12 24 | 0 0 8 6 | * * N
x4/3x3x4/3o (N → ∞) . . . . | 24N | 1 1 2 | 1 2 2 1 | 2 1 1 ------------+-----+-------------+--------------+------- x . . . | 2 | 12N * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 12N * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 24N | 0 1 1 1 | 1 1 1 ------------+-----+-------------+--------------+------- x4/3x . . | 8 | 4 4 0 | 3N * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 12N * * | 1 1 0 . x3x . | 6 | 0 3 3 | * * 8N * | 1 0 1 . . x4/3o | 4 | 0 0 4 | * * * 6N | 0 1 1 ------------+-----+-------------+--------------+------- x4/3x3x . ♦ 48 | 24 24 24 | 6 12 8 0 | N * * x . x4/3o ♦ 8 | 4 0 8 | 0 4 0 2 | * 3N * . x3x4/3o ♦ 24 | 0 12 24 | 0 0 8 6 | * * N
x3x3x *b4/3x (N → ∞) . . . . | 48N | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 -------------+-----+-----------------+----------------------+---------- x . . . | 2 | 24N * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 24N * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 24N * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 24N | 0 0 1 0 1 1 | 0 1 1 1 -------------+-----+-----------------+----------------------+---------- x3x . . | 6 | 3 3 0 0 | 8N * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 12N * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 12N * * * | 0 1 1 0 . x3x . | 6 | 0 3 3 0 | * * * 8N * * | 1 0 0 1 . x . *b4/3x | 8 | 0 4 0 4 | * * * * 6N * | 0 1 0 1 . . x x | 4 | 0 0 2 2 | * * * * * 12N | 0 0 1 1 -------------+-----+-----------------+----------------------+---------- x3x3x . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 | 2N * * * x3x . *b4/3x ♦ 48 | 24 24 0 24 | 8 0 12 0 6 0 | * N * * x . x x ♦ 8 | 4 0 4 4 | 0 2 2 0 0 2 | * * 6N * . x3x *b4/3x ♦ 48 | 0 24 24 24 | 0 0 0 8 6 12 | * * * N
© 2004-2025 | top of page |