Acronym | editoh |
Name | elongated ditetrahedral-octahedral honeycomb |
Confer |
|
This CRF honeycomb is derived from ditoh as its elongation.
Dissecting each etidpy into stacks of 2 polar tets and an equatorial trip, then this same honeycomb would become the uniform gyetoh. – If even the octs would be parallelly dissected into pairs of squippies within each non-prismatic layer, and those layers would reflect those sectionings into the next non-prismatic layer, then this would result in 5Y4-4T-6P3-tri-3.
Incidence matrix according to Dynkin symbol
s∞x2o3o6s (N → ∞) demi( . . . . . ) | 2N | 1 3 6 | 3 9 6 | 3 3 4 ------------------+----+---------+----------+------ demi( . x . . . ) | 2 | N * * | 0 0 6 | 0 3 3 s . 2 . s | 2 | * 3N * | 0 4 0 | 2 0 2 sefa( . . . o6s ) | 2 | * * 6N | 1 1 1 | 1 1 1 ------------------+----+---------+----------+------ . . . o6s | 3 | 0 0 3 | 2N * * | 1 1 0 sefa( s . 2 o6s ) | 3 | 0 2 1 | * 6N * | 1 0 1 sefa( . x 2 o6s ) | 4 | 2 0 2 | * * 3N | 0 1 1 ------------------+----+---------+----------+------ s . 2 o6s ♦ 6 | 0 6 6 | 2 6 0 | N * * . x 2 o6s ♦ 6 | 3 0 6 | 2 0 3 | * N * sefa( s∞x2o3o6s ) ♦ 8 | 3 6 6 | 0 6 3 | * * N starting figure: x∞x o3o6x
s∞x2s3s6o (N → ∞) demi( . . . . . ) | 6N | 1 1 2 4 2 | 2 1 6 3 4 2 | 2 1 2 1 4 ------------------+----+-----------------+--------------------+------------- demi( . x . . . ) | 2 | 3N * * * * | 0 0 0 0 4 2 | 0 0 2 1 3 x s 2 s . . | 2 | * 3N * * * | 0 0 4 0 0 0 | 2 0 0 0 2 q s 2 . s . | 2 | * * 6N * * | 0 0 2 2 0 0 | 1 1 0 0 2 q sefa( . . s3s . ) | 2 | * * * 12N * | 1 0 1 0 1 0 | 1 0 1 0 1 h sefa( . . . s6o ) | 2 | * * * * 6N | 0 1 0 1 0 1 | 0 1 0 1 1 h ------------------+----+-----------------+--------------------+------------- . . s3s . | 3 | 0 0 0 3 0 | 4N * * * * * | 1 0 1 0 0 h3o . . . s6o | 3 | 0 0 0 0 3 | * 2N * * * * | 0 1 0 1 0 h3o sefa( s 2 s3s . ) | 3 | 0 1 1 1 0 | * * 12N * * * | 1 0 0 0 1 oh&#q sefa( s 2 . s6o ) | 3 | 0 0 2 0 1 | * * * 6N * * | 0 1 0 0 1 oh&#q sefa( . x2s3s . ) | 4 | 2 0 0 2 0 | * * * * 6N * | 0 0 1 0 1 x h sefa( . x 2 s6o ) | 4 | 2 0 0 0 2 | * * * * * 3N | 0 0 0 1 1 x h ------------------+----+-----------------+--------------------+------------- s 2 s3s . ♦ 6 | 0 3 3 6 0 | 2 0 6 0 0 0 | 2N * * * * ho3oh&#q s 2 . s6o ♦ 6 | 0 0 6 0 6 | 0 2 0 6 0 0 | * N * * * ho3oh&#q . x2s3s . ♦ 6 | 3 0 0 6 0 | 2 0 0 0 3 0 | * * 2N * * x h3o . x 2 s6o ♦ 6 | 3 0 0 0 6 | 0 2 0 0 0 3 | * * * N * x h3o sefa( s∞x2s3s6o ) ♦ 8 | 3 2 4 4 2 | 0 0 4 2 2 1 | * * * * 3N ohho3oooo&#(q,x,q)t starting figure: x∞x x3x6o
© 2004-2024 | top of page |