Acronym editoh
Name elongated ditetrahedral-octahedral honeycomb
Confer
related tesselations:
gyetoh  
related CRF honeycombs:
ditoh   5Y4-4T-6P3-tri-3  

This CRF honeycomb is derived from ditoh as its elongation.

Dissecting each etidpy into stacks of 2 polar tets and an equatorial trip, then this same honeycomb would become the uniform gyetoh. – If even the octs would be parallelly dissected into pairs of squippies within each non-prismatic layer, and those layers would reflect those sectionings into the next non-prismatic layer, then this would result in 5Y4-4T-6P3-tri-3.


Incidence matrix according to Dynkin symbol

s∞x2o3o6s   (N → ∞)

demi( . . . . . ) | 2N | 1  3  6 |  3  9  6 | 3 3 4
------------------+----+---------+----------+------
demi( . x . . . ) |  2 | N  *  * |  0  0  6 | 0 3 3
      s . 2 . s   |  2 | * 3N  * |  0  4  0 | 2 0 2
sefa( . . . o6s ) |  2 | *  * 6N |  1  1  1 | 1 1 1
------------------+----+---------+----------+------
      . . . o6s   |  3 | 0  0  3 | 2N  *  * | 1 1 0
sefa( s . 2 o6s ) |  3 | 0  2  1 |  * 6N  * | 1 0 1
sefa( . x 2 o6s ) |  4 | 2  0  2 |  *  * 3N | 0 1 1
------------------+----+---------+----------+------
      s . 2 o6s     6 | 0  6  6 |  2  6  0 | N * *
      . x 2 o6s     6 | 3  0  6 |  2  0  3 | * N *
sefa( s∞x2o3o6s )   8 | 3  6  6 |  0  6  3 | * * N

starting figure: x∞x o3o6x

s∞x2s3s6o   (N → ∞)

demi( . . . . . ) | 6N |  1  1  2   4  2 |  2  1   6  3  4  2 |  2 1  2 1  4
------------------+----+-----------------+--------------------+-------------
demi( . x . . . ) |  2 | 3N  *  *   *  * |  0  0   0  0  4  2 |  0 0  2 1  3  x
      s 2 s . .   |  2 |  * 3N  *   *  * |  0  0   4  0  0  0 |  2 0  0 0  2  q
      s 2 . s .   |  2 |  *  * 6N   *  * |  0  0   2  2  0  0 |  1 1  0 0  2  q
sefa( . . s3s . ) |  2 |  *  *  * 12N  * |  1  0   1  0  1  0 |  1 0  1 0  1  h
sefa( . . . s6o ) |  2 |  *  *  *   * 6N |  0  1   0  1  0  1 |  0 1  0 1  1  h
------------------+----+-----------------+--------------------+-------------
      . . s3s .   |  3 |  0  0  0   3  0 | 4N  *   *  *  *  * |  1 0  1 0  0  h3o
      . . . s6o   |  3 |  0  0  0   0  3 |  * 2N   *  *  *  * |  0 1  0 1  0  h3o
sefa( s 2 s3s . ) |  3 |  0  1  1   1  0 |  *  * 12N  *  *  * |  1 0  0 0  1  oh&#q
sefa( s 2 . s6o ) |  3 |  0  0  2   0  1 |  *  *   * 6N  *  * |  0 1  0 0  1  oh&#q
sefa( . x2s3s . ) |  4 |  2  0  0   2  0 |  *  *   *  * 6N  * |  0 0  1 0  1  x h
sefa( . x 2 s6o ) |  4 |  2  0  0   0  2 |  *  *   *  *  * 3N |  0 0  0 1  1  x h
------------------+----+-----------------+--------------------+-------------
      s 2 s3s .     6 |  0  3  3   6  0 |  2  0   6  0  0  0 | 2N *  * *  *  ho3oh&#q
      s 2 . s6o     6 |  0  0  6   0  6 |  0  2   0  6  0  0 |  * N  * *  *  ho3oh&#q
      . x2s3s .     6 |  3  0  0   6  0 |  2  0   0  0  3  0 |  * * 2N *  *  x h3o
      . x 2 s6o     6 |  3  0  0   0  6 |  0  2   0  0  0  3 |  * *  * N  *  x h3o
sefa( s∞x2s3s6o )   8 |  3  2  4   4  2 |  0  0   4  2  2  1 |  * *  * * 3N  ohho3oooo&#(q,x,q)t

starting figure: x∞x x3x6o

© 2004-2025
top of page