Acronym hiph
Name hexagonal prismatic honeycomb,
Voronoi complex of unit-stacked hexagonal lattice
 
 © ©
Confer
general polytopal classes:
noble polytopes  
External
links
wikipedia

Incidence matrix according to Dynkin symbol

x∞o o3o6x   (N → ∞)

. . . . . | 2N |  2  3 |  6 3 | 6
----------+----+-------+------+--
x . . . . |  2 | 2N  * |  3 0 | 3
. . . . x |  2 |  * 3N |  2 2 | 4
----------+----+-------+------+--
x . . . x |  4 |  2  2 | 3N * | 2
. . . o6x |  6 |  0  6 |  * N | 2
----------+----+-------+------+--
x . . o6x  12 |  6 12 |  6 2 | N

snubbed forms: s∞o2o3o6s

x∞x o3o6x   (N → ∞)

. . . . . | 4N |  1  1  3 |  3  3  3 | 3 3
----------+----+----------+----------+----
x . . . . |  2 | 2N  *  * |  3  0  0 | 3 0
. x . . . |  2 |  * 2N  * |  0  3  0 | 0 3
. . . . x |  2 |  *  * 6N |  1  1  2 | 2 2
----------+----+----------+----------+----
x . . . x |  4 |  2  0  2 | 3N  *  * | 2 0
. x . . x |  4 |  0  2  2 |  * 3N  * | 0 2
. . . o6x |  6 |  0  0  6 |  *  * 2N | 1 1
----------+----+----------+----------+----
x . . o6x  12 |  6  0 12 |  6  0  2 | N *
. x . o6x  12 |  0  6 12 |  0  6  2 | * N

snubbed forms: s∞x2o3o6s

x∞o x3x6o   (N → ∞)

. . . . . | 6N |  2  1  2 |  2  4  2 1 |  4 2
----------+----+----------+------------+-----
x . . . . |  2 | 6N  *  * |  1  2  0 0 |  2 1
. . x . . |  2 |  * 3N  * |  2  0  2 0 |  4 0
. . . x . |  2 |  *  * 6N |  0  2  1 1 |  2 2
----------+----+----------+------------+-----
x . x . . |  4 |  2  2  0 | 3N  *  * * |  2 0
x . . x . |  4 |  2  0  2 |  * 6N  * * |  1 1
. . x3x . |  6 |  0  3  3 |  *  * 2N * |  2 0
. . . x6o |  6 |  0  0  6 |  *  *  * N |  0 2
----------+----+----------+------------+-----
x . x3x .  12 |  6  6  6 |  3  3  2 0 | 2N *
x . . x6o  12 |  6  0 12 |  0  6  0 2 |  * N

snubbed forms: s∞o2s3s6o

x∞x x3x6o   (N → ∞)

. . . . . | 12N |  1  1  1   2 |  1  2  1  2  2  1 |  2 1  2 1
----------+-----+--------------+-------------------+----------
x . . . . |   2 | 6N  *  *   * |  1  2  0  0  0  0 |  2 1  0 0
. x . . . |   2 |  * 6N  *   * |  0  0  1  2  0  0 |  0 0  2 1
. . x . . |   2 |  *  * 6N   * |  1  0  1  0  2  0 |  2 0  2 0
. . . x . |   2 |  *  *  * 12N |  0  1  0  1  1  1 |  1 1  1 1
----------+-----+--------------+-------------------+----------
x . x . . |   4 |  2  0  2   0 | 3N  *  *  *  *  * |  2 0  0 0
x . . x . |   4 |  2  0  0   2 |  * 6N  *  *  *  * |  1 1  0 0
. x x . . |   4 |  0  2  2   0 |  *  * 3N  *  *  * |  0 0  2 0
. x . x . |   4 |  0  2  0   2 |  *  *  * 6N  *  * |  0 0  1 1
. . x3x . |   6 |  0  0  3   3 |  *  *  *  * 4N  * |  1 0  1 0
. . . x6o |   6 |  0  0  0   6 |  *  *  *  *  * 2N |  0 1  0 1
----------+-----+--------------+-------------------+----------
x . x3x .   12 |  6  0  6   6 |  3  3  0  0  2  0 | 2N *  * *
x . . x6o   12 |  6  0  0  12 |  0  6  0  0  0  2 |  * N  * *
. x x3x .   12 |  0  6  6   6 |  0  0  3  3  2  0 |  * * 2N *
. x . x6o   12 |  0  6  0  12 |  0  0  0  6  0  2 |  * *  * N

x∞o x3x3x3*c   (N → ∞)

. . . . .    | 6N |  2  1  1  1 |  2  2  2 1 1 1 | 2 2 2
-------------+----+-------------+----------------+------
x . . . .    |  2 | 6N  *  *  * |  1  1  1 0 0 0 | 1 1 1
. . x . .    |  2 |  * 3N  *  * |  2  0  0 1 1 0 | 2 2 0
. . . x .    |  2 |  *  * 3N  * |  0  2  0 1 0 1 | 2 0 2
. . . . x    |  2 |  *  *  * 3N |  0  0  2 0 1 1 | 0 2 2
-------------+----+-------------+----------------+------
x . x . .    |  4 |  2  2  0  0 | 3N  *  * * * * | 1 1 0
x . . x .    |  4 |  2  0  2  0 |  * 3N  * * * * | 1 0 1
x . . . x    |  4 |  2  0  0  2 |  *  * 3N * * * | 0 1 1
. . x3x .    |  6 |  0  3  3  0 |  *  *  * N * * | 2 0 0
. . x . x3*c |  6 |  0  3  0  3 |  *  *  * * N * | 0 2 0
. . . x3x    |  6 |  0  0  3  3 |  *  *  * * * N | 0 0 2
-------------+----+-------------+----------------+------
x . x3x .     12 |  6  6  6  0 |  3  3  0 2 0 0 | N * *
x . x . x3*c  12 |  6  6  0  6 |  3  0  3 0 2 0 | * N *
x . . x3x     12 |  6  0  6  6 |  0  3  3 0 0 2 | * * N

snubbed forms: s∞o2s3s3s3*c

x∞x x3x3x3*c   (N → ∞)

. . . . .    | 12N |  1  1  1  1  1 |  1  1  1  1  1  1  1  1  1 | 1 1 1 1 1 1
-------------+-----+----------------+----------------------------+------------
x . . . .    |   2 | 6N  *  *  *  * |  1  1  1  0  0  0  0  0  0 | 1 1 1 0 0 0
. x . . .    |   2 |  * 6N  *  *  * |  0  0  0  1  1  1  0  0  0 | 0 0 0 1 1 1
. . x . .    |   2 |  *  * 6N  *  * |  1  0  0  1  0  0  1  1  0 | 1 1 0 1 1 0
. . . x .    |   2 |  *  *  * 6N  * |  0  1  0  0  1  0  1  0  1 | 1 0 1 1 0 1
. . . . x    |   2 |  *  *  *  * 6N |  0  0  1  0  0  1  0  1  1 | 0 1 1 0 1 1
-------------+-----+----------------+----------------------------+------------
x . x . .    |   4 |  2  0  2  0  0 | 3N  *  *  *  *  *  *  *  * | 1 1 0 0 0 0
x . . x .    |   4 |  2  0  0  2  0 |  * 3N  *  *  *  *  *  *  * | 1 0 1 0 0 0
x . . . x    |   4 |  2  0  0  0  2 |  *  * 3N  *  *  *  *  *  * | 0 1 1 0 0 0
. x x . .    |   4 |  0  2  2  0  0 |  *  *  * 3N  *  *  *  *  * | 0 0 0 1 1 0
. x . x .    |   4 |  0  2  0  2  0 |  *  *  *  * 3N  *  *  *  * | 0 0 0 1 0 1
. x . . x    |   4 |  0  2  0  0  2 |  *  *  *  *  * 3N  *  *  * | 0 0 0 0 1 1
. . x3x .    |   6 |  0  0  3  3  0 |  *  *  *  *  *  * 2N  *  * | 1 0 0 1 0 0
. . x . x3*c |   6 |  0  0  3  0  3 |  *  *  *  *  *  *  * 2N  * | 0 1 0 0 1 0
. . . x3x    |   6 |  0  0  0  3  3 |  *  *  *  *  *  *  *  * 2N | 0 0 1 0 0 1
-------------+-----+----------------+----------------------------+------------
x . x3x .      12 |  6  0  6  6  0 |  3  3  0  0  0  0  2  0  0 | N * * * * *
x . x . x3*c   12 |  6  0  6  0  6 |  3  0  3  0  0  0  0  2  0 | * N * * * *
x . . x3x      12 |  6  0  0  6  6 |  0  3  3  0  0  0  0  0  2 | * * N * * *
. x x3x .      12 |  0  6  6  6  0 |  0  0  0  3  3  0  2  0  0 | * * * N * *
. x x . x3*c   12 |  0  6  6  0  6 |  0  0  0  3  0  3  0  2  0 | * * * * N *
. x . x3x      12 |  0  6  0  6  6 |  0  0  0  0  3  3  0  0  2 | * * * * * N

© 2004-2019
top of page