Acronym | hiph |
Name |
hexagonal prismatic honeycomb, Voronoi complex of unit-stacked hexagonal lattice |
© | |
VRML |
|
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x∞o o3o6x (N → ∞) . . . . . | 2N | 2 3 | 6 3 | 6 ----------+----+-------+------+-- x . . . . | 2 | 2N * | 3 0 | 3 . . . . x | 2 | * 3N | 2 2 | 4 ----------+----+-------+------+-- x . . . x | 4 | 2 2 | 3N * | 2 . . . o6x | 6 | 0 6 | * N | 2 ----------+----+-------+------+-- x . . o6x ♦ 12 | 6 12 | 6 2 | N snubbed forms: s∞o2o3o6s
x∞x o3o6x (N → ∞) . . . . . | 4N | 1 1 3 | 3 3 3 | 3 3 ----------+----+----------+----------+---- x . . . . | 2 | 2N * * | 3 0 0 | 3 0 . x . . . | 2 | * 2N * | 0 3 0 | 0 3 . . . . x | 2 | * * 6N | 1 1 2 | 2 2 ----------+----+----------+----------+---- x . . . x | 4 | 2 0 2 | 3N * * | 2 0 . x . . x | 4 | 0 2 2 | * 3N * | 0 2 . . . o6x | 6 | 0 0 6 | * * 2N | 1 1 ----------+----+----------+----------+---- x . . o6x ♦ 12 | 6 0 12 | 6 0 2 | N * . x . o6x ♦ 12 | 0 6 12 | 0 6 2 | * N snubbed forms: s∞x2o3o6s
x∞o x3x6o (N → ∞) . . . . . | 6N | 2 1 2 | 2 4 2 1 | 4 2 ----------+----+----------+------------+----- x . . . . | 2 | 6N * * | 1 2 0 0 | 2 1 . . x . . | 2 | * 3N * | 2 0 2 0 | 4 0 . . . x . | 2 | * * 6N | 0 2 1 1 | 2 2 ----------+----+----------+------------+----- x . x . . | 4 | 2 2 0 | 3N * * * | 2 0 x . . x . | 4 | 2 0 2 | * 6N * * | 1 1 . . x3x . | 6 | 0 3 3 | * * 2N * | 2 0 . . . x6o | 6 | 0 0 6 | * * * N | 0 2 ----------+----+----------+------------+----- x . x3x . ♦ 12 | 6 6 6 | 3 3 2 0 | 2N * x . . x6o ♦ 12 | 6 0 12 | 0 6 0 2 | * N snubbed forms: s∞o2s3s6o
x∞x x3x6o (N → ∞) . . . . . | 12N | 1 1 1 2 | 1 2 1 2 2 1 | 2 1 2 1 ----------+-----+--------------+-------------------+---------- x . . . . | 2 | 6N * * * | 1 2 0 0 0 0 | 2 1 0 0 . x . . . | 2 | * 6N * * | 0 0 1 2 0 0 | 0 0 2 1 . . x . . | 2 | * * 6N * | 1 0 1 0 2 0 | 2 0 2 0 . . . x . | 2 | * * * 12N | 0 1 0 1 1 1 | 1 1 1 1 ----------+-----+--------------+-------------------+---------- x . x . . | 4 | 2 0 2 0 | 3N * * * * * | 2 0 0 0 x . . x . | 4 | 2 0 0 2 | * 6N * * * * | 1 1 0 0 . x x . . | 4 | 0 2 2 0 | * * 3N * * * | 0 0 2 0 . x . x . | 4 | 0 2 0 2 | * * * 6N * * | 0 0 1 1 . . x3x . | 6 | 0 0 3 3 | * * * * 4N * | 1 0 1 0 . . . x6o | 6 | 0 0 0 6 | * * * * * 2N | 0 1 0 1 ----------+-----+--------------+-------------------+---------- x . x3x . ♦ 12 | 6 0 6 6 | 3 3 0 0 2 0 | 2N * * * x . . x6o ♦ 12 | 6 0 0 12 | 0 6 0 0 0 2 | * N * * . x x3x . ♦ 12 | 0 6 6 6 | 0 0 3 3 2 0 | * * 2N * . x . x6o ♦ 12 | 0 6 0 12 | 0 0 0 6 0 2 | * * * N snubbed forms: s∞x2s3s6o
x∞o x3x3x3*c (N → ∞) . . . . . | 6N | 2 1 1 1 | 2 2 2 1 1 1 | 2 2 2 -------------+----+-------------+----------------+------ x . . . . | 2 | 6N * * * | 1 1 1 0 0 0 | 1 1 1 . . x . . | 2 | * 3N * * | 2 0 0 1 1 0 | 2 2 0 . . . x . | 2 | * * 3N * | 0 2 0 1 0 1 | 2 0 2 . . . . x | 2 | * * * 3N | 0 0 2 0 1 1 | 0 2 2 -------------+----+-------------+----------------+------ x . x . . | 4 | 2 2 0 0 | 3N * * * * * | 1 1 0 x . . x . | 4 | 2 0 2 0 | * 3N * * * * | 1 0 1 x . . . x | 4 | 2 0 0 2 | * * 3N * * * | 0 1 1 . . x3x . | 6 | 0 3 3 0 | * * * N * * | 2 0 0 . . x . x3*c | 6 | 0 3 0 3 | * * * * N * | 0 2 0 . . . x3x | 6 | 0 0 3 3 | * * * * * N | 0 0 2 -------------+----+-------------+----------------+------ x . x3x . ♦ 12 | 6 6 6 0 | 3 3 0 2 0 0 | N * * x . x . x3*c ♦ 12 | 6 6 0 6 | 3 0 3 0 2 0 | * N * x . . x3x ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 | * * N snubbed forms: s∞o2s3s3s3*c
x∞x x3x3x3*c (N → ∞) . . . . . | 12N | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 -------------+-----+----------------+----------------------------+------------ x . . . . | 2 | 6N * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0 . x . . . | 2 | * 6N * * * | 0 0 0 1 1 1 0 0 0 | 0 0 0 1 1 1 . . x . . | 2 | * * 6N * * | 1 0 0 1 0 0 1 1 0 | 1 1 0 1 1 0 . . . x . | 2 | * * * 6N * | 0 1 0 0 1 0 1 0 1 | 1 0 1 1 0 1 . . . . x | 2 | * * * * 6N | 0 0 1 0 0 1 0 1 1 | 0 1 1 0 1 1 -------------+-----+----------------+----------------------------+------------ x . x . . | 4 | 2 0 2 0 0 | 3N * * * * * * * * | 1 1 0 0 0 0 x . . x . | 4 | 2 0 0 2 0 | * 3N * * * * * * * | 1 0 1 0 0 0 x . . . x | 4 | 2 0 0 0 2 | * * 3N * * * * * * | 0 1 1 0 0 0 . x x . . | 4 | 0 2 2 0 0 | * * * 3N * * * * * | 0 0 0 1 1 0 . x . x . | 4 | 0 2 0 2 0 | * * * * 3N * * * * | 0 0 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * 3N * * * | 0 0 0 0 1 1 . . x3x . | 6 | 0 0 3 3 0 | * * * * * * 2N * * | 1 0 0 1 0 0 . . x . x3*c | 6 | 0 0 3 0 3 | * * * * * * * 2N * | 0 1 0 0 1 0 . . . x3x | 6 | 0 0 0 3 3 | * * * * * * * * 2N | 0 0 1 0 0 1 -------------+-----+----------------+----------------------------+------------ x . x3x . ♦ 12 | 6 0 6 6 0 | 3 3 0 0 0 0 2 0 0 | N * * * * * x . x . x3*c ♦ 12 | 6 0 6 0 6 | 3 0 3 0 0 0 0 2 0 | * N * * * * x . . x3x ♦ 12 | 6 0 0 6 6 | 0 3 3 0 0 0 0 0 2 | * * N * * * . x x3x . ♦ 12 | 0 6 6 6 0 | 0 0 0 3 3 0 2 0 0 | * * * N * * . x x . x3*c ♦ 12 | 0 6 6 0 6 | 0 0 0 3 0 3 0 2 0 | * * * * N * . x . x3x ♦ 12 | 0 6 0 6 6 | 0 0 0 0 3 3 0 0 2 | * * * * * N
© 2004-2025 | top of page |