Acronym batitit
Name bitruncated tesseractic tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

o4x3x3o4o   (N → ∞)

. . . . . | 24N |   2   4 |  1   8   4 |  4   8  1 | 4 2
----------+-----+---------+------------+-----------+----
. x . . . |   2 | 24N   * |  1   4   0 |  4   4  0 | 4 1
. . x . . |   2 |   * 48N |  0   2   2 |  1   4  1 | 2 2
----------+-----+---------+------------+-----------+----
o4x . . . |   4 |   4   0 | 6N   *   * |  4   0  0 | 4 0
. x3x . . |   6 |   3   3 |  * 32N   * |  1   2  0 | 2 1
. . x3o . |   3 |   0   3 |  *   * 32N |  0   2  1 | 1 2
----------+-----+---------+------------+-----------+----
o4x3x . .   24 |  24  12 |  6   8   0 | 4N   *  * | 2 0
. x3x3o .   12 |   6  12 |  0   4   4 |  * 16N  * | 1 1
. . x3o4o    6 |   0  12 |  0   0   8 |  *   * 4N | 0 2
----------+-----+---------+------------+-----------+----
o4x3x3o .   96 |  96  96 | 24  64  32 |  8  16  0 | N *
. x3x3o4o   48 |  24  96 |  0  32  64 |  0  16  8 | * N

o3x3o *b3x4o   (N → ∞)

. . .    . . | 48N |   4   2 |   2   2   8   1 |  1   4   4  4 |  2 2 2
-------------+-----+---------+-----------------+---------------+-------
. x .    . . |   2 | 96N   * |   1   1   2   0 |  1   2   2  1 |  2 1 1
. . .    x . |   2 |   * 48N |   0   0   4   1 |  0   2   2  4 |  1 2 2
-------------+-----+---------+-----------------+---------------+-------
o3x .    . . |   3 |   3   0 | 32N   *   *   * |  1   2   0  0 |  2 1 0
. x3o    . . |   3 |   3   0 |   * 32N   *   * |  1   0   2  0 |  2 0 1
. x . *b3x . |   6 |   3   3 |   *   * 64N   * |  0   1   1  1 |  1 1 1
. . .    x4o |   4 |   0   4 |   *   *   * 12N |  0   0   0  4 |  0 2 2
-------------+-----+---------+-----------------+---------------+-------
o3x3o    . .    6 |  12   0 |   4   4   0   0 | 8N   *   *  * |  2 0 0
o3x . *b3x .   12 |  12   6 |   4   0   4   0 |  * 16N   *  * |  1 1 0
. x3o *b3x .   12 |  12   6 |   0   4   4   0 |  *   * 16N  * |  1 0 1
. x . *b3x4o   24 |  12  24 |   0   0   8   6 |  *   *   * 8N |  0 1 1
-------------+-----+---------+-----------------+---------------+-------
o3x3o *b3x .   48 |  96  24 |  32  32  32   0 |  8   8   8  0 | 2N * *
o3x . *b3x4o   96 |  96  96 |  32   0  64  24 |  0  16   0  8 |  * N *
. x3o *b3x4o   96 |  96  96 |   0  32  64  24 |  0   0  16  8 |  * * N

x3x3x *b3o4o   (N → ∞)

. . .    . . | 48N |   1   4   1 |   4   1   4   4 |  4   4   4  1 |  4 1 1
-------------+-----+-------------+-----------------+---------------+-------
x . .    . . |   2 | 24N   *   * |   4   1   0   0 |  4   4   0  0 |  4 1 0
. x .    . . |   2 |   * 96N   * |   1   0   1   2 |  1   2   2  1 |  2 1 1
. . x    . . |   2 |   *   * 24N |   0   1   4   0 |  4   0   4  0 |  4 0 1
-------------+-----+-------------+-----------------+---------------+-------
x3x .    . . |   6 |   3   3   0 | 32N   *   *   * |  1   2   0  0 |  2 1 0
x . x    . . |   4 |   2   0   2 |   * 12N   *   * |  4   0   0  0 |  4 0 0
. x3x    . . |   6 |   0   3   3 |   *   * 32N   * |  1   0   2  0 |  2 0 1
. x . *b3o . |   3 |   0   3   0 |   *   *   * 64N |  0   1   1  1 |  1 1 1
-------------+-----+-------------+-----------------+---------------+-------
x3x3x    . .   24 |  12  12  12 |   4   6   4   0 | 8N   *   *  * |  2 0 0
x3x . *b3o .   12 |   6  12   0 |   4   0   0   4 |  * 16N   *  * |  1 1 0
. x3x *b3o .   12 |   0  12   6 |   0   0   4   4 |  *   * 16N  * |  1 0 1
. x . *b3o4o    6 |   0  12   0 |   0   0   0   8 |  *   *   * 8N |  0 1 1
-------------+-----+-------------+-----------------+---------------+-------
x3x3x *b3o .   96 |  48  96  48 |  32  24  32  32 |  8   8   8  0 | 2N * *
x3x . *b3o4o   48 |  24  96   0 |  32   0   0  64 |  0  16   0  8 |  * N *
. x3x *b3o4o   48 |   0  96  24 |   0   0  32  64 |  0   0  16  8 |  * * N

x3x3x *b3o *b3o   (N → ∞)

. . .    .    . | 48N |   1   4   1 |   4   1   4   2   2 |  4  2  2  2  2  1 | 2 2 1 1
----------------+-----+-------------+---------------------+-------------------+--------
x . .    .    . |   2 | 24N   *   * |   4   1   0   0   0 |  4  2  2  0  0  0 | 2 2 1 0
. x .    .    . |   2 |   * 96N   * |   1   0   1   1   1 |  1  1  1  1  1  1 | 1 1 1 1
. . x    .    . |   2 |   *   * 24N |   0   1   4   0   0 |  4  0  0  2  2  0 | 2 2 0 1
----------------+-----+-------------+---------------------+-------------------+--------
x3x .    .    . |   6 |   3   3   0 | 32N   *   *   *   * |  1  1  1  0  0  0 | 1 1 1 0
x . x    .    . |   4 |   2   0   2 |   * 12N   *   *   * |  4  0  0  0  0  0 | 2 2 0 0
. x3x    .    . |   6 |   0   3   3 |   *   * 32N   *   * |  1  0  0  1  1  0 | 1 1 0 1
. x . *b3o    . |   3 |   0   3   0 |   *   *   * 32N   * |  0  1  0  1  0  1 | 1 0 1 1
. x .    . *b3o |   3 |   0   3   0 |   *   *   *   * 32N |  0  0  1  0  1  1 | 0 1 1 1
----------------+-----+-------------+---------------------+-------------------+--------
x3x3x    .    .   24 |  12  12  12 |   4   6   4   0   0 | 8N  *  *  *  *  * | 1 1 0 0
x3x . *b3o    .   12 |   6  12   0 |   4   0   0   4   0 |  * 8N  *  *  *  * | 1 0 1 0
x3x .    . *b3o   12 |   6  12   0 |   4   0   0   0   4 |  *  * 8N  *  *  * | 0 1 1 0
. x3x *b3o    .   12 |   0  12   6 |   0   0   4   4   0 |  *  *  * 8N  *  * | 1 0 0 1
. x3x    . *b3o   12 |   0  12   6 |   0   0   4   0   4 |  *  *  *  * 8N  * | 0 1 0 1
. x . *b3o *b3o    6 |   0  12   0 |   0   0   0   4   4 |  *  *  *  *  * 8N | 0 0 1 1
----------------+-----+-------------+---------------------+-------------------+--------
x3x3x *b3o    .   96 |  48  96  48 |  32  24  32  32   0 |  8  8  0  8  0  0 | N * * *
x3x3x    . *b3o   96 |  48  96  48 |  32  24  32   0  32 |  8  0  8  0  8  0 | * N * *
x3x . *b3o *b3o   48 |  24  96   0 |  32   0   0  32  32 |  0  8  8  0  0  8 | * * N *
. x3x *b3o *b3o   48 |   0  96  24 |   0   0  32  32  32 |  0  0  0  8  8  8 | * * * N

© 2004-2025
top of page