Acronym squippyal cube, K-4.16
Name squippy atop gyro cube
 
 ©
Segmentochoron display
Circumradius sqrt[(4+sqrt(2))/7] = 0.879465
Lace city
in approx. ASCII-art
o4o  x4o   
           
  o4x   o4x
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Face vector 13, 40, 47, 20
Confer
related segmentochora:
squaf   squappy  
general polytopal classes:
segmentochora  

Note that the slanted sides of the tetragonal projection, given in the lace city above, are not parallel. Therefore this polychoron cannot be considered alternatively as some "squippy || squap", just because this very lacking parallelity.


Incidence matrix

squippy || gyro cube   → height = sqrt[sqrt(8)-1]/2 = 0.676097

1 * * * | 4 4 0 0 0 0 0 0 | 4 8 4 0 0 0 0 0 0 0 0 0 | 1 4 4 1 0 0 0 0 tip of squippy, verf = squap
* 4 * * | 1 0 2 2 2 0 0 0 | 2 2 0 1 2 2 1 2 1 0 0 0 | 1 2 1 0 1 2 1 0 at base of squippy
* * 4 * | 0 1 0 2 0 2 1 0 | 0 2 2 0 1 0 2 2 0 1 2 0 | 0 1 2 1 0 1 2 1 at top of cube
* * * 4 | 0 0 0 0 2 0 1 2 | 0 0 0 0 0 1 0 2 2 0 2 1 | 0 0 0 0 1 1 2 1 at bottom of cube
--------+-----------------+-------------------------+----------------
1 1 0 0 | 4 * * * * * * * | 2 2 0 0 0 0 0 0 0 0 0 0 | 1 2 1 0 0 0 0 0
1 0 1 0 | * 4 * * * * * * | 0 2 2 0 0 0 0 0 0 0 0 0 | 0 1 2 1 0 0 0 0
0 2 0 0 | * * 4 * * * * * | 1 0 0 1 1 1 0 0 0 0 0 0 | 1 1 0 0 1 1 0 0
0 1 1 0 | * * * 8 * * * * | 0 1 0 0 1 0 1 1 0 0 0 0 | 0 1 1 0 0 1 1 0
0 1 0 1 | * * * * 8 * * * | 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 0 0 1 1 1 0
0 0 2 0 | * * * * * 4 * * | 0 0 1 0 0 0 1 0 0 1 1 0 | 0 0 1 1 0 0 1 1
0 0 1 1 | * * * * * * 4 * | 0 0 0 0 0 0 0 2 0 0 2 0 | 0 0 0 0 0 1 2 1
0 0 0 2 | * * * * * * * 4 | 0 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 0 1 0 1 1
--------+-----------------+-------------------------+----------------
1 2 0 0 | 2 0 1 0 0 0 0 0 | 4 * * * * * * * * * * * | 1 1 0 0 0 0 0 0
1 1 1 0 | 1 1 0 1 0 0 0 0 | * 8 * * * * * * * * * * | 0 1 1 0 0 0 0 0
1 0 2 0 | 0 2 0 0 0 1 0 0 | * * 4 * * * * * * * * * | 0 0 1 1 0 0 0 0
0 4 0 0 | 0 0 4 0 0 0 0 0 | * * * 1 * * * * * * * * | 1 0 0 0 1 0 0 0
0 2 1 0 | 0 0 1 2 0 0 0 0 | * * * * 4 * * * * * * * | 0 1 0 0 0 1 0 0
0 2 0 1 | 0 0 1 0 2 0 0 0 | * * * * * 4 * * * * * * | 0 0 0 0 1 1 0 0
0 1 2 0 | 0 0 0 2 0 1 0 0 | * * * * * * 4 * * * * * | 0 0 1 0 0 0 1 0
0 1 1 1 | 0 0 0 1 1 0 1 0 | * * * * * * * 8 * * * * | 0 0 0 0 0 1 1 0
0 1 0 2 | 0 0 0 0 2 0 0 1 | * * * * * * * * 4 * * * | 0 0 0 0 1 0 1 0
0 0 4 0 | 0 0 0 0 0 4 0 0 | * * * * * * * * * 1 * * | 0 0 0 1 0 0 0 1
0 0 2 2 | 0 0 0 0 0 1 2 1 | * * * * * * * * * * 4 * | 0 0 0 0 0 0 1 1
0 0 0 4 | 0 0 0 0 0 0 0 4 | * * * * * * * * * * * 1 | 0 0 0 0 1 0 0 1
--------+-----------------+-------------------------+----------------
1 4 0 0 | 4 0 4 0 0 0 0 0 | 4 0 0 1 0 0 0 0 0 0 0 0 | 1 * * * * * * * squippy
1 2 1 0 | 2 1 1 2 0 0 0 0 | 1 2 0 0 1 0 0 0 0 0 0 0 | * 4 * * * * * * tet
1 1 2 0 | 1 2 0 2 0 1 0 0 | 0 2 1 0 0 0 1 0 0 0 0 0 | * * 4 * * * * * tet
1 0 4 0 | 0 4 0 0 0 4 0 0 | 0 0 4 0 0 0 0 0 0 1 0 0 | * * * 1 * * * * squippy
0 4 0 4 | 0 0 4 0 8 0 0 4 | 0 0 0 1 0 4 0 0 4 0 0 1 | * * * * 1 * * * squap
0 2 1 1 | 0 0 1 2 2 0 1 0 | 0 0 0 0 1 1 0 2 0 0 0 0 | * * * * * 4 * * tet
0 1 2 2 | 0 0 0 2 2 1 2 1 | 0 0 0 0 0 0 1 2 1 0 1 0 | * * * * * * 4 * squippy
0 0 4 4 | 0 0 0 0 0 4 4 4 | 0 0 0 0 0 0 0 0 0 1 4 1 | * * * * * * * 1 cube

© 2004-2024
top of page