Acronym srida gridtum Name bistratic srid-cap of prahi,(srid,grid)-based tutsachoron,(srid,grid)-based tutism Circumradius sqrt[35+15 sqrt(5)] = 8.278950 Lace cityin approx. ASCII-art ``` x5x o5x u5x x5F o5x u5x x5x x5U u5f x5f u5F X5o F5o X5x o5F x5X o5X f5x F5u f5u U5x x5x x5u x5o F5x x5u x5o x5x ``` Dihedral angles at {6} between hip and tut:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756° at {4} between hip and pip:   arccos(-sqrt[(10+2 sqrt(5))/15]) = 169.187683° at {5} between pecu and pip:   162° at {5} between pip and srid:   162° at {4} between hip and pecu:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843° at {4} between hip and srid:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843° at {3} between pecu and tut:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between srid and tut:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {10} between grid and pecu:   36° at {6} between grid and tut:   arccos(sqrt[7+3 sqrt(5)]/4) = 22.238756° at {4} between grid and hip:   arccos(sqrt[(3+sqrt(5))/6]) = 20.905157° Confer uniform relative: prahi   general polytopal classes: tutsatopes   bistratic lace towers

Incidence matrix according to Dynkin symbol

```xux3oox5xxx&#xt   → both heights = (sqrt(5)-1)/4 = 0.309017
(srid || pseudo (u,x)-srid || grid)

o..3o..5o..     | 60  *   * |  2  2  1  0   0  0  0  0 |  1  2  1  2  2  0  0  0  0  0  0 | 1  1  2  1  0 0
.o.3.o.5.o.     |  * 60   * |  0  0  1  2   2  0  0  0 |  0  0  0  2  2  1  1  2  0  0  0 | 0  1  2  1  1 0
..o3..o5..o     |  *  * 120 |  0  0  0  0   1  1  1  1 |  0  0  0  1  0  0  1  1  1  1  1 | 0  1  1  0  1 1
----------------+-----------+--------------------------+----------------------------------+----------------
x.. ... ...     |  2  0   0 | 60  *  *  *   *  *  *  * |  1  1  0  1  0  0  0  0  0  0  0 | 1  1  1  0  0 0
... ... x..     |  2  0   0 |  * 60  *  *   *  *  *  * |  0  1  1  0  1  0  0  0  0  0  0 | 1  0  1  1  0 0
oo.3oo.5oo.&#x  |  1  1   0 |  *  * 60  *   *  *  *  * |  0  0  0  2  2  0  0  0  0  0  0 | 0  1  2  1  0 0
... ... .x.     |  0  2   0 |  *  *  * 60   *  *  *  * |  0  0  0  0  1  1  0  1  0  0  0 | 0  0  1  1  1 0
.oo3.oo5.oo&#x  |  0  1   1 |  *  *  *  * 120  *  *  * |  0  0  0  1  0  0  1  1  0  0  0 | 0  1  1  0  1 0
..x ... ...     |  0  0   2 |  *  *  *  *   * 60  *  * |  0  0  0  1  0  0  0  0  1  1  0 | 0  1  1  0  0 1
... ..x ...     |  0  0   2 |  *  *  *  *   *  * 60  * |  0  0  0  0  0  0  1  0  1  0  1 | 0  1  0  0  1 1
... ... ..x     |  0  0   2 |  *  *  *  *   *  *  * 60 |  0  0  0  0  0  0  0  1  0  1  1 | 0  0  1  0  1 1
----------------+-----------+--------------------------+----------------------------------+----------------
x..3o.. ...     |  3  0   0 |  3  0  0  0   0  0  0  0 | 20  *  *  *  *  *  *  *  *  *  * | 1  1  0  0  0 0
x.. ... x..     |  4  0   0 |  2  2  0  0   0  0  0  0 |  * 30  *  *  *  *  *  *  *  *  * | 1  0  1  0  0 0
... o..5x..     |  5  0   0 |  0  5  0  0   0  0  0  0 |  *  * 12  *  *  *  *  *  *  *  * | 1  0  0  1  0 0
xux ... ...&#xt |  2  2   2 |  1  0  2  0   2  1  0  0 |  *  *  * 60  *  *  *  *  *  *  * | 0  1  1  0  0 0
... ... xx.&#x  |  2  2   0 |  0  1  2  1   0  0  0  0 |  *  *  *  * 60  *  *  *  *  *  * | 0  0  1  1  0 0
... .o.5.x.     |  0  5   0 |  0  0  0  5   0  0  0  0 |  *  *  *  *  * 12  *  *  *  *  * | 0  0  0  1  1 0
... .ox ...&#x  |  0  1   2 |  0  0  0  0   2  0  1  0 |  *  *  *  *  *  * 60  *  *  *  * | 0  1  0  0  1 0
... ... .xx&#x  |  0  2   2 |  0  0  0  1   2  0  0  1 |  *  *  *  *  *  *  * 60  *  *  * | 0  0  1  0  1 0
..x3..x ...     |  0  0   6 |  0  0  0  0   0  3  3  0 |  *  *  *  *  *  *  *  * 20  *  * | 0  1  0  0  0 1
..x ... ..x     |  0  0   4 |  0  0  0  0   0  2  0  2 |  *  *  *  *  *  *  *  *  * 30  * | 0  0  1  0  0 1
... ..x5..x     |  0  0  10 |  0  0  0  0   0  0  5  5 |  *  *  *  *  *  *  *  *  *  * 12 | 0  0  0  0  1 1
----------------+-----------+--------------------------+----------------------------------+----------------
x..3o..5x..     ♦ 60  0   0 | 60 60  0  0   0  0  0  0 | 20 30 12  0  0  0  0  0  0  0  0 | 1  *  *  *  * *
xux3oox ...&#xt ♦  3  3   6 |  3  0  3  0   6  3  3  0 |  1  0  0  3  0  0  3  0  1  0  0 | * 20  *  *  * *
xux ... xxx&#xt ♦  4  4   4 |  2  2  4  2   4  2  0  2 |  0  1  0  2  2  0  0  2  0  1  0 | *  * 30  *  * *
... oo.5xx.&#x  ♦  5  5   0 |  0  5  5  5   0  0  0  0 |  0  0  1  0  5  1  0  0  0  0  0 | *  *  * 12  * *
... .ox5.xx&#x  ♦  0  5  10 |  0  0  0  5  10  0  5  5 |  0  0  0  0  0  1  5  5  0  0  1 | *  *  *  * 12 *
..x3..x5..x     ♦  0  0 120 |  0  0  0  0   0 60 60 60 |  0  0  0  0  0  0  0  0 20 30 12 | *  *  *  *  * 1
```