Acronym srida gridtum
Name bistratic srid-cap of prahi,
(srid,grid)-based tutsachoron,
(srid,grid)-based tutism
Circumradius sqrt[35+15 sqrt(5)] = 8.278950
Lace city
in approx. ASCII-art
        x5x
           
    o5x    
        u5x
           
           
        x5F
o5x        
    u5x    
           
x5x        
        x5U
           
    u5f    
           
x5f     u5F
    X5o    
           
F5o     X5x
           
o5F     x5X
           
    o5X    
f5x     F5u
           
    f5u    
           
        U5x
x5x        
           
    x5u    
x5o        
        F5x
           
           
        x5u
    x5o    
           
        x5x
Dihedral angles
  • at {6} between hip and tut:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
  • at {4} between hip and pip:   arccos(-sqrt[(10+2 sqrt(5))/15]) = 169.187683°
  • at {5} between pecu and pip:   162°
  • at {5} between pip and srid:   162°
  • at {4} between hip and pecu:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843°
  • at {4} between hip and srid:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843°
  • at {3} between pecu and tut:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {3} between srid and tut:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
  • at {10} between grid and pecu:   36°
  • at {6} between grid and tut:   arccos(sqrt[7+3 sqrt(5)]/4) = 22.238756°
  • at {4} between grid and hip:   arccos(sqrt[(3+sqrt(5))/6]) = 20.905157°
Face vector 240, 540, 376, 76
Confer
uniform relative:
prahi  
general polytopal classes:
tutsatopes   bistratic lace towers  

Incidence matrix according to Dynkin symbol

xux3oox5xxx&#xt   → both heights = (sqrt(5)-1)/4 = 0.309017
(srid || pseudo (u,x)-srid || grid)

o..3o..5o..     | 60  *   * |  2  2  1  0   0  0  0  0 |  1  2  1  2  2  0  0  0  0  0  0 | 1  1  2  1  0 0
.o.3.o.5.o.     |  * 60   * |  0  0  1  2   2  0  0  0 |  0  0  0  2  2  1  1  2  0  0  0 | 0  1  2  1  1 0
..o3..o5..o     |  *  * 120 |  0  0  0  0   1  1  1  1 |  0  0  0  1  0  0  1  1  1  1  1 | 0  1  1  0  1 1
----------------+-----------+--------------------------+----------------------------------+----------------
x.. ... ...     |  2  0   0 | 60  *  *  *   *  *  *  * |  1  1  0  1  0  0  0  0  0  0  0 | 1  1  1  0  0 0
... ... x..     |  2  0   0 |  * 60  *  *   *  *  *  * |  0  1  1  0  1  0  0  0  0  0  0 | 1  0  1  1  0 0
oo.3oo.5oo.&#x  |  1  1   0 |  *  * 60  *   *  *  *  * |  0  0  0  2  2  0  0  0  0  0  0 | 0  1  2  1  0 0
... ... .x.     |  0  2   0 |  *  *  * 60   *  *  *  * |  0  0  0  0  1  1  0  1  0  0  0 | 0  0  1  1  1 0
.oo3.oo5.oo&#x  |  0  1   1 |  *  *  *  * 120  *  *  * |  0  0  0  1  0  0  1  1  0  0  0 | 0  1  1  0  1 0
..x ... ...     |  0  0   2 |  *  *  *  *   * 60  *  * |  0  0  0  1  0  0  0  0  1  1  0 | 0  1  1  0  0 1
... ..x ...     |  0  0   2 |  *  *  *  *   *  * 60  * |  0  0  0  0  0  0  1  0  1  0  1 | 0  1  0  0  1 1
... ... ..x     |  0  0   2 |  *  *  *  *   *  *  * 60 |  0  0  0  0  0  0  0  1  0  1  1 | 0  0  1  0  1 1
----------------+-----------+--------------------------+----------------------------------+----------------
x..3o.. ...     |  3  0   0 |  3  0  0  0   0  0  0  0 | 20  *  *  *  *  *  *  *  *  *  * | 1  1  0  0  0 0
x.. ... x..     |  4  0   0 |  2  2  0  0   0  0  0  0 |  * 30  *  *  *  *  *  *  *  *  * | 1  0  1  0  0 0
... o..5x..     |  5  0   0 |  0  5  0  0   0  0  0  0 |  *  * 12  *  *  *  *  *  *  *  * | 1  0  0  1  0 0
xux ... ...&#xt |  2  2   2 |  1  0  2  0   2  1  0  0 |  *  *  * 60  *  *  *  *  *  *  * | 0  1  1  0  0 0
... ... xx.&#x  |  2  2   0 |  0  1  2  1   0  0  0  0 |  *  *  *  * 60  *  *  *  *  *  * | 0  0  1  1  0 0
... .o.5.x.     |  0  5   0 |  0  0  0  5   0  0  0  0 |  *  *  *  *  * 12  *  *  *  *  * | 0  0  0  1  1 0
... .ox ...&#x  |  0  1   2 |  0  0  0  0   2  0  1  0 |  *  *  *  *  *  * 60  *  *  *  * | 0  1  0  0  1 0
... ... .xx&#x  |  0  2   2 |  0  0  0  1   2  0  0  1 |  *  *  *  *  *  *  * 60  *  *  * | 0  0  1  0  1 0
..x3..x ...     |  0  0   6 |  0  0  0  0   0  3  3  0 |  *  *  *  *  *  *  *  * 20  *  * | 0  1  0  0  0 1
..x ... ..x     |  0  0   4 |  0  0  0  0   0  2  0  2 |  *  *  *  *  *  *  *  *  * 30  * | 0  0  1  0  0 1
... ..x5..x     |  0  0  10 |  0  0  0  0   0  0  5  5 |  *  *  *  *  *  *  *  *  *  * 12 | 0  0  0  0  1 1
----------------+-----------+--------------------------+----------------------------------+----------------
x..3o..5x..      60  0   0 | 60 60  0  0   0  0  0  0 | 20 30 12  0  0  0  0  0  0  0  0 | 1  *  *  *  * *
xux3oox ...&#xt   3  3   6 |  3  0  3  0   6  3  3  0 |  1  0  0  3  0  0  3  0  1  0  0 | * 20  *  *  * *
xux ... xxx&#xt   4  4   4 |  2  2  4  2   4  2  0  2 |  0  1  0  2  2  0  0  2  0  1  0 | *  * 30  *  * *
... oo.5xx.&#x    5  5   0 |  0  5  5  5   0  0  0  0 |  0  0  1  0  5  1  0  0  0  0  0 | *  *  * 12  * *
... .ox5.xx&#x    0  5  10 |  0  0  0  5  10  0  5  5 |  0  0  0  0  0  1  5  5  0  0  1 | *  *  *  * 12 *
..x3..x5..x       0  0 120 |  0  0  0  0   0 60 60 60 |  0  0  0  0  0  0  0  0 20 30 12 | *  *  *  *  * 1

© 2004-2024
top of page