Acronym ...
Name x3β4o3x (?)
Circumradius ...

No uniform realisation is possible.


Incidence matrix according to Dynkin symbol

x3β4o3x

both( . . . . ) | 576 |   1   2   1   2 |   2   1   2   2   2   2 |  1  1  2  1  2
----------------+-----+-----------------+-------------------------+---------------
both( x . . . ) |   2 | 288   *   *   * |   2   0   2   0   0   0 |  1  1  2  0  0
both( . . . x ) |   2 |   * 576   *   * |   1   1   0   0   1   1 |  1  0  1  1  1
both( . s4o . ) |   2 |   *   * 288   * |   0   0   0   2   0   2 |  0  1  0  1  2
sefa( x3β . . ) |   2 |   *   *   * 576 |   0   0   1   1   1   0 |  0  1  1  0  1
----------------+-----+-----------------+-------------------------+---------------
both( x . . x ) |   4 |   2   2   0   0 | 288   *   *   *   *   * |  1  0  1  0  0
both( . . o3x ) |   3 |   0   3   0   0 |   * 192   *   *   *   * |  1  0  0  1  0
      x3β . .      6 |   3   0   0   3 |   *   * 192   *   *   * |  0  1  1  0  0
sefa( x3β4o . ) |   4 |   0   0   2   2 |   *   *   * 288   *   * |  0  1  0  0  1
sefa( x3β . x ) |   4 |   0   2   0   2 |   *   *   *   * 288   * |  0  0  1  0  1
sefa( . s4o3x ) |   6 |   0   3   3   0 |   *   *   *   *   * 192 |  0  0  0  1  1
----------------+-----+-----------------+-------------------------+---------------
both( x . o3x )    6 |   3   6   0   0 |   3   2   0   0   0   0 | 96  *  *  *  *
      x3β4o .     24 |  12   0  12  24 |   0   0   8  12   0   0 |  * 24  *  *  *
      x3β . x     12 |   6   6   0   6 |   3   0   2   0   3   0 |  *  * 96  *  *
both( . s4o3x )   12 |   0  12   6   0 |   0   4   0   0   0   4 |  *  *  * 48  *
sefa( x3β4o3x )   12 |   0   6   6   6 |   0   0   0   3   3   2 |  *  *  *  * 96

starting figure: x3x4o3x

© 2004-2019
top of page