Acronym | ... |
Name | x3β3o4x (?) |
Circumradius | ... |
Face vector | 192, 672, 512, 104 |
No uniform realisation is possible.
Incidence matrix according to Dynkin symbol
x3β3o4x both( . . . . ) | 192 | 1 2 2 2 | 2 1 2 1 2 2 2 | 1 1 2 1 2 ----------------+-----+----------------+----------------------+-------------- both( x . . . ) | 2 | 96 * * * | 2 0 2 0 0 0 0 | 1 1 2 0 0 both( . . . x ) | 2 | * 192 * * | 1 1 0 0 0 1 1 | 1 0 1 1 1 sefa( x3β . . ) | 2 | * * 192 * | 0 0 1 0 1 1 0 | 0 1 1 0 1 sefa( . β3o . ) | 2 | * * * 192 | 0 0 0 1 1 0 1 | 0 1 0 1 1 ----------------+-----+----------------+----------------------+-------------- both( x . . x ) | 4 | 2 2 0 0 | 96 * * * * * * | 1 0 1 0 0 both( . . o4x ) | 4 | 0 4 0 0 | * 48 * * * * * | 1 0 0 1 0 x3β . . ♦ 6 | 3 0 3 0 | * * 64 * * * * | 0 1 1 0 0 . β3o . ♦ 3 | 0 0 0 3 | * * * 64 * * * | 0 1 0 1 0 sefa( x3β3o . ) | 4 | 0 0 2 2 | * * * * 96 * * | 0 1 0 0 1 sefa( x3β 2 x ) | 4 | 0 2 2 0 | * * * * * 96 * | 0 0 1 0 1 sefa( . β3o4x ) | 8 | 0 4 0 4 | * * * * * * 48 | 0 0 0 1 1 ----------------+-----+----------------+----------------------+-------------- both( x . o4x ) ♦ 8 | 4 8 0 0 | 4 2 0 0 0 0 0 | 24 * * * * x3β3o . ♦ 12 | 6 0 12 12 | 0 0 4 4 6 0 0 | * 16 * * * x3β 2 x ♦ 12 | 6 6 6 0 | 3 0 2 0 0 3 0 | * * 32 * * . β3o4x ♦ 24 | 0 24 0 24 | 0 6 0 8 0 0 6 | * * * 8 * sefa( x3β3o4x ) ♦ 16 | 0 8 8 8 | 0 0 0 0 4 4 2 | * * * * 24 starting figure: x3x3o4x
© 2004-2024 | top of page |