Acronym ... Name x3β3o4β (?) Circumradius ...

No uniform realisation is possible.

Incidence matrix according to Dynkin symbol

```x3β3o4β

both( . . . . ) | 192 |  1   2  1   2   2 |  2  1  1  2   4   4 |  1  2 1  4
----------------+-----+-------------------+---------------------+-----------
both( x . . . ) |   2 | 96   *  *   *   * |  2  1  0  0   2   0 |  1  2 0  2
both( . s 2 s ) |   2 |  * 192  *   *   * |  0  0  0  0   2   2 |  0  1 1  2
both( . . o4s ) |   2 |  *   * 96   *   * |  0  1  0  0   0   2 |  0  0 1  2
sefa( x3β . . ) |   2 |  *   *  * 192   * |  1  0  0  1   1   0 |  1  1 0  1
sefa( . β3o . ) |   2 |  *   *  *   * 192 |  0  0  1  1   0   1 |  1  0 1  1
----------------+-----+-------------------+---------------------+-----------
x3β . .   ♦   6 |  3   0  0   3   0 | 64  *  *  *   *   * |  1  1 0  0
both( x 2 o4s ) |   4 |  2   0  2   0   0 |  * 48  *  *   *   * |  0  0 0  2
. β3o .   ♦   3 |  0   0  0   0   3 |  *  * 64  *   *   * |  1  0 1  1
sefa( x3β3o . ) |   4 |  0   0  0   2   2 |  *  *  * 96   *   * |  1  0 0  1
sefa( x3β 2 β ) |   4 |  1   2  0   1   0 |  *  *  *  * 192   * |  0  1 0  1
sefa( . β3o4β ) |   4 |  0   2  1   0   1 |  *  *  *  *   * 192 |  0  0 1  1
----------------+-----+-------------------+---------------------+-----------
x3β3o .   ♦  12 |  6   0  0  12  12 |  4  0  4  6   0   0 | 16  * *  *
x3β 2 β   ♦  12 |  6   6  0   6   0 |  2  0  0  0   6   0 |  * 32 *  *
. β3o4β   ♦  24 |  0  24 12   0  24 |  0  0  8  0   0  24 |  *  * 8  *
sefa( x3β3o4β ) ♦   8 |  2   4  2   2   2 |  0  1  0  1   2   2 |  *  * * 96

starting figure: x3x3o4x
```