Acronym | tutatoa sirco |
Name | truncated tetrahedron atop truncated octahedron atop small rhombicuboctahedron |
Circumradius | ... |
Dihedral angles
(at margins) |
|
Face vector | 60, 174, 158, 42 |
Confer |
|
Incidence matrix according to Dynkin symbol
xx(oq)3xx(xx)3ox(qo)&#xt → height(1,2) = sqrt(5/8) = 0.790569 height(2,3) = sqrt[sqrt(2)-3/4] = 0.814993 (tut || toe || sirco) o.(..)3o.(..)3o.(..) | 12 * * * | 1 2 2 0 0 0 0 0 0 0 0 | 2 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 1 1 0 0 0 0 0 .o(..)3.o(..)3.o(..) | * 24 * * | 0 0 1 1 1 1 1 1 0 0 0 | 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 | 0 1 1 1 1 1 1 1 0 ..(o.)3..(o.)3..(o.) | * * 12 * | 0 0 0 0 0 0 2 0 2 2 0 | 0 0 0 0 0 0 0 0 1 2 2 0 0 1 1 2 0 | 0 0 0 0 1 0 1 2 1 ..(.o)3..(.o)3..(.o) | * * * 12 | 0 0 0 0 0 0 0 2 0 2 2 | 0 0 0 0 0 0 0 0 0 0 2 2 1 0 1 2 1 | 0 0 0 0 0 1 1 2 1 -------------------------+-------------+---------------------------------+--------------------------------------------+------------------- x.(..) ..(..) ..(..) | 2 0 0 0 | 6 * * * * * * * * * * | 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 1 0 0 0 0 0 0 ..(..) x.(..) ..(..) | 2 0 0 0 | * 12 * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 0 0 oo(..)3oo(..)3oo(..)&#x | 1 1 0 0 | * * 24 * * * * * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 0 0 .x(..) ..(..) ..(..) | 0 2 0 0 | * * * 12 * * * * * * * | 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 | 0 1 1 0 1 0 1 0 0 ..(..) .x(..) ..(..) | 0 2 0 0 | * * * * 12 * * * * * * | 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 | 0 1 0 1 1 1 0 1 0 ..(..) ..(..) .x(..) | 0 2 0 0 | * * * * * 12 * * * * * | 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 | 0 0 1 1 0 1 1 0 0 .o(o.)3.o(o.)3.o(o.)&#x | 0 1 1 0 | * * * * * * 24 * * * * | 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 0 0 1 0 1 1 0 .o(.o)3.o(.o)3.o(.o)&#x | 0 1 0 1 | * * * * * * * 24 * * * | 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 | 0 0 0 0 0 1 1 1 0 ..(..) ..(x.) ..(..) | 0 0 2 0 | * * * * * * * * 12 * * | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 | 0 0 0 0 1 0 0 1 1 ..(oo)3..(oo)3..(oo)&#x | 0 0 1 1 | * * * * * * * * * 24 * | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 | 0 0 0 0 0 0 1 1 1 ..(..) ..(.x) ..(..) | 0 0 0 2 | * * * * * * * * * * 12 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 | 0 0 0 0 0 1 0 1 1 -------------------------+-------------+---------------------------------+--------------------------------------------+------------------- x.(..)3x.(..) ..(..) | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 | 4 * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 ..(..) x.(..)3o.(..) | 3 0 0 0 | 0 3 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 xx(..) ..(..) ..(..)&#x | 2 2 0 0 | 1 0 2 1 0 0 0 0 0 0 0 | * * 12 * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 ..(..) xx(..) ..(..)&#x | 2 2 0 0 | 0 1 2 0 1 0 0 0 0 0 0 | * * * 12 * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0 0 ..(..) ..(..) ox(..)&#x | 1 2 0 0 | 0 0 2 0 0 1 0 0 0 0 0 | * * * * 12 * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 .x(..)3.x(..) ..(..) | 0 6 0 0 | 0 0 0 3 3 0 0 0 0 0 0 | * * * * * 4 * * * * * * * * * * * | 0 1 0 0 1 0 0 0 0 .x(..) ..(..) .x(..) | 0 4 0 0 | 0 0 0 2 0 2 0 0 0 0 0 | * * * * * * 6 * * * * * * * * * * | 0 0 1 0 0 0 1 0 0 ..(..) .x(..)3.x(..) | 0 6 0 0 | 0 0 0 0 3 3 0 0 0 0 0 | * * * * * * * 4 * * * * * * * * * | 0 0 0 1 0 1 0 0 0 .x(o.) ..(..) ..(..)&#x | 0 2 1 0 | 0 0 0 1 0 0 2 0 0 0 0 | * * * * * * * * 12 * * * * * * * * | 0 0 0 0 1 0 1 0 0 ..(..) .x(x.) ..(..)&#x | 0 2 2 0 | 0 0 0 0 1 0 2 0 1 0 0 | * * * * * * * * * 12 * * * * * * * | 0 0 0 0 1 0 0 1 0 .o(oo)3.o(oo)3.o(oo)&#x | 0 1 1 1 | 0 0 0 0 0 0 1 1 0 1 0 | * * * * * * * * * * 24 * * * * * * | 0 0 0 0 0 0 1 1 0 ..(..) .x(.x) ..(..)&#x | 0 2 0 2 | 0 0 0 0 1 0 0 2 0 0 1 | * * * * * * * * * * * 12 * * * * * | 0 0 0 0 0 1 0 1 0 ..(..) ..(..) .x(.o)&#x | 0 2 0 1 | 0 0 0 0 0 1 0 2 0 0 0 | * * * * * * * * * * * * 12 * * * * | 0 0 0 0 0 1 1 0 0 ..(o.)3..(x.) ..(..) | 0 0 3 0 | 0 0 0 0 0 0 0 0 3 0 0 | * * * * * * * * * * * * * 4 * * * | 0 0 0 0 1 0 0 0 1 ..(oq) ..(..) ..(qo)&#zx | 0 0 2 2 | 0 0 0 0 0 0 0 0 0 4 0 | * * * * * * * * * * * * * * 6 * * | 0 0 0 0 0 0 1 0 1 ..(..) ..(xx) ..(..)&#x | 0 0 2 2 | 0 0 0 0 0 0 0 0 1 2 1 | * * * * * * * * * * * * * * * 12 * | 0 0 0 0 0 0 0 1 1 ..(..) ..(.x)3..(.o) | 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * * 4 | 0 0 0 0 0 1 0 0 1 -------------------------+-------------+---------------------------------+--------------------------------------------+------------------- x.(..)3x.(..)3o.(..) ♦ 12 0 0 0 | 6 12 0 0 0 0 0 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * xx(..)3xx(..) ..(..)&#x ♦ 6 6 0 0 | 3 3 6 3 3 0 0 0 0 0 0 | 1 0 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * * xx(..) ..(..) ox(..)&#x ♦ 2 4 0 0 | 1 0 4 2 0 2 0 0 0 0 0 | 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 | * * 6 * * * * * * ..(..) xx(..)3ox(..)&#x ♦ 3 6 0 0 | 0 3 6 0 3 3 0 0 0 0 0 | 0 1 0 3 3 0 0 1 0 0 0 0 0 0 0 0 0 | * * * 4 * * * * * .x(o.)3.x(x.) ..(..)&#x ♦ 0 6 3 0 | 0 0 0 3 3 0 6 0 3 0 0 | 0 0 0 0 0 1 0 0 3 3 0 0 0 1 0 0 0 | * * * * 4 * * * * ..(..) .x(.x)3.x(.o)&#x ♦ 0 6 0 3 | 0 0 0 0 3 3 0 6 0 0 3 | 0 0 0 0 0 0 0 1 0 0 0 3 3 0 0 0 1 | * * * * * 4 * * * .x(oq) ..(..) .x(qo)&#x ♦ 0 4 2 2 | 0 0 0 2 0 2 4 4 0 4 0 | 0 0 0 0 0 0 1 0 2 0 4 0 2 0 1 0 0 | * * * * * * 6 * * ..(..) .x(xx) ..(..)&#x ♦ 0 2 2 2 | 0 0 0 0 1 0 2 2 1 2 1 | 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 1 0 | * * * * * * * 12 * ..(oq)3..(xx)3..(qo)&#zx ♦ 0 0 12 12 | 0 0 0 0 0 0 0 0 12 24 12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 6 12 4 | * * * * * * * * 1
© 2004-2025 | top of page |