| Acronym | tutatoa sirco |
| Name | truncated tetrahedron atop truncated octahedron atop small rhombicuboctahedron |
| Circumradius | ... |
|
Dihedral angles
(at margins) |
|
| Face vector | 60, 174, 158, 42 |
| Confer |
|
Incidence matrix according to Dynkin symbol
xx(oq)3xx(xx)3ox(qo)&#xt → height(1,2) = sqrt(5/8) = 0.790569
height(2,3) = sqrt[sqrt(2)-3/4] = 0.814993
(tut || toe || sirco)
o.(..)3o.(..)3o.(..) | 12 * * * | 1 2 2 0 0 0 0 0 0 0 0 | 2 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 1 1 0 0 0 0 0
.o(..)3.o(..)3.o(..) | * 24 * * | 0 0 1 1 1 1 1 1 0 0 0 | 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 | 0 1 1 1 1 1 1 1 0
..(o.)3..(o.)3..(o.) | * * 12 * | 0 0 0 0 0 0 2 0 2 2 0 | 0 0 0 0 0 0 0 0 1 2 2 0 0 1 1 2 0 | 0 0 0 0 1 0 1 2 1
..(.o)3..(.o)3..(.o) | * * * 12 | 0 0 0 0 0 0 0 2 0 2 2 | 0 0 0 0 0 0 0 0 0 0 2 2 1 0 1 2 1 | 0 0 0 0 0 1 1 2 1
-------------------------+-------------+---------------------------------+--------------------------------------------+-------------------
x.(..) ..(..) ..(..) | 2 0 0 0 | 6 * * * * * * * * * * | 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 1 0 0 0 0 0 0
..(..) x.(..) ..(..) | 2 0 0 0 | * 12 * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 0 0
oo(..)3oo(..)3oo(..)&#x | 1 1 0 0 | * * 24 * * * * * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 0 0
.x(..) ..(..) ..(..) | 0 2 0 0 | * * * 12 * * * * * * * | 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 | 0 1 1 0 1 0 1 0 0
..(..) .x(..) ..(..) | 0 2 0 0 | * * * * 12 * * * * * * | 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 | 0 1 0 1 1 1 0 1 0
..(..) ..(..) .x(..) | 0 2 0 0 | * * * * * 12 * * * * * | 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 | 0 0 1 1 0 1 1 0 0
.o(o.)3.o(o.)3.o(o.)&#x | 0 1 1 0 | * * * * * * 24 * * * * | 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 0 0 1 0 1 1 0
.o(.o)3.o(.o)3.o(.o)&#x | 0 1 0 1 | * * * * * * * 24 * * * | 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 | 0 0 0 0 0 1 1 1 0
..(..) ..(x.) ..(..) | 0 0 2 0 | * * * * * * * * 12 * * | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 | 0 0 0 0 1 0 0 1 1
..(oo)3..(oo)3..(oo)&#x | 0 0 1 1 | * * * * * * * * * 24 * | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 | 0 0 0 0 0 0 1 1 1
..(..) ..(.x) ..(..) | 0 0 0 2 | * * * * * * * * * * 12 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 | 0 0 0 0 0 1 0 1 1
-------------------------+-------------+---------------------------------+--------------------------------------------+-------------------
x.(..)3x.(..) ..(..) | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 | 4 * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0
..(..) x.(..)3o.(..) | 3 0 0 0 | 0 3 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0
xx(..) ..(..) ..(..)&#x | 2 2 0 0 | 1 0 2 1 0 0 0 0 0 0 0 | * * 12 * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0
..(..) xx(..) ..(..)&#x | 2 2 0 0 | 0 1 2 0 1 0 0 0 0 0 0 | * * * 12 * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0 0
..(..) ..(..) ox(..)&#x | 1 2 0 0 | 0 0 2 0 0 1 0 0 0 0 0 | * * * * 12 * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0
.x(..)3.x(..) ..(..) | 0 6 0 0 | 0 0 0 3 3 0 0 0 0 0 0 | * * * * * 4 * * * * * * * * * * * | 0 1 0 0 1 0 0 0 0
.x(..) ..(..) .x(..) | 0 4 0 0 | 0 0 0 2 0 2 0 0 0 0 0 | * * * * * * 6 * * * * * * * * * * | 0 0 1 0 0 0 1 0 0
..(..) .x(..)3.x(..) | 0 6 0 0 | 0 0 0 0 3 3 0 0 0 0 0 | * * * * * * * 4 * * * * * * * * * | 0 0 0 1 0 1 0 0 0
.x(o.) ..(..) ..(..)&#x | 0 2 1 0 | 0 0 0 1 0 0 2 0 0 0 0 | * * * * * * * * 12 * * * * * * * * | 0 0 0 0 1 0 1 0 0
..(..) .x(x.) ..(..)&#x | 0 2 2 0 | 0 0 0 0 1 0 2 0 1 0 0 | * * * * * * * * * 12 * * * * * * * | 0 0 0 0 1 0 0 1 0
.o(oo)3.o(oo)3.o(oo)&#x | 0 1 1 1 | 0 0 0 0 0 0 1 1 0 1 0 | * * * * * * * * * * 24 * * * * * * | 0 0 0 0 0 0 1 1 0
..(..) .x(.x) ..(..)&#x | 0 2 0 2 | 0 0 0 0 1 0 0 2 0 0 1 | * * * * * * * * * * * 12 * * * * * | 0 0 0 0 0 1 0 1 0
..(..) ..(..) .x(.o)&#x | 0 2 0 1 | 0 0 0 0 0 1 0 2 0 0 0 | * * * * * * * * * * * * 12 * * * * | 0 0 0 0 0 1 1 0 0
..(o.)3..(x.) ..(..) | 0 0 3 0 | 0 0 0 0 0 0 0 0 3 0 0 | * * * * * * * * * * * * * 4 * * * | 0 0 0 0 1 0 0 0 1
..(oq) ..(..) ..(qo)&#zx | 0 0 2 2 | 0 0 0 0 0 0 0 0 0 4 0 | * * * * * * * * * * * * * * 6 * * | 0 0 0 0 0 0 1 0 1
..(..) ..(xx) ..(..)&#x | 0 0 2 2 | 0 0 0 0 0 0 0 0 1 2 1 | * * * * * * * * * * * * * * * 12 * | 0 0 0 0 0 0 0 1 1
..(..) ..(.x)3..(.o) | 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * * 4 | 0 0 0 0 0 1 0 0 1
-------------------------+-------------+---------------------------------+--------------------------------------------+-------------------
x.(..)3x.(..)3o.(..) ♦ 12 0 0 0 | 6 12 0 0 0 0 0 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * *
xx(..)3xx(..) ..(..)&#x ♦ 6 6 0 0 | 3 3 6 3 3 0 0 0 0 0 0 | 1 0 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * *
xx(..) ..(..) ox(..)&#x ♦ 2 4 0 0 | 1 0 4 2 0 2 0 0 0 0 0 | 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 | * * 6 * * * * * *
..(..) xx(..)3ox(..)&#x ♦ 3 6 0 0 | 0 3 6 0 3 3 0 0 0 0 0 | 0 1 0 3 3 0 0 1 0 0 0 0 0 0 0 0 0 | * * * 4 * * * * *
.x(o.)3.x(x.) ..(..)&#x ♦ 0 6 3 0 | 0 0 0 3 3 0 6 0 3 0 0 | 0 0 0 0 0 1 0 0 3 3 0 0 0 1 0 0 0 | * * * * 4 * * * *
..(..) .x(.x)3.x(.o)&#x ♦ 0 6 0 3 | 0 0 0 0 3 3 0 6 0 0 3 | 0 0 0 0 0 0 0 1 0 0 0 3 3 0 0 0 1 | * * * * * 4 * * *
.x(oq) ..(..) .x(qo)&#x ♦ 0 4 2 2 | 0 0 0 2 0 2 4 4 0 4 0 | 0 0 0 0 0 0 1 0 2 0 4 0 2 0 1 0 0 | * * * * * * 6 * *
..(..) .x(xx) ..(..)&#x ♦ 0 2 2 2 | 0 0 0 0 1 0 2 2 1 2 1 | 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 1 0 | * * * * * * * 12 *
..(oq)3..(xx)3..(qo)&#zx ♦ 0 0 12 12 | 0 0 0 0 0 0 0 0 12 24 12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 6 12 4 | * * * * * * * * 1
© 2004-2025 | top of page |