Acronym tadeca Name truncated decachoron Circumradius sqrt(2y2+7y+7) Confer extremal cases: deca   redeca   general polytopal classes: isogonal Externallinks

Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size h=sqrt(3). The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in redeca, while y → ∞ results again in the pre-image deca (rescaled back down accordingly).

Incidence matrix according to Dynkin symbol

```xo3yb3by3ox&#zh   → height = 0
y > 0 (depending on truncation depth)
b = y+3 (pseudo)
(h-laced tegum sum of 2 inverted (x,y,b)-grips)

o.3o.3o.3o.     & | 120 |  1  1   2 |  1   3  2 |  3  1
------------------+-----+-----------+-----------+------
x. .. .. ..     & |   2 | 60  *   * |  1   2  0 |  2  1  x
.. y. .. ..     & |   2 |  * 60   * |  1   0  2 |  3  0  y
oo3oo3oo3oo&#h    |   2 |  *  * 120 |  0   2  1 |  2  1  h
------------------+-----+-----------+-----------+------
x.3y. .. ..     & |   6 |  3  3   0 | 20   *  * |  2  0  (x,y)-{6}
xo .. .. ..&#h  & |   3 |  1  0   2 |  * 120  * |  1  1  xhh
.. yb3by ..&#zh   |  12 |  0  6   6 |  *   * 20 |  2  0  (y,h)-{12}
------------------+-----+-----------+-----------+------
xo3yb3by ..&#zh & ♦  36 | 12 18  24 |  4  12  4 | 10  *  dittet
xo .. .. ox&#h    ♦   4 |  2  0   4 |  0   4  0 |  * 30  disphenoid
```