Acronym | tadeca |
Name | truncated decachoron |
Circumradius | sqrt(2y2+7y+7) |
Face vector | 120, 240, 160, 40 |
Confer | |
External links |
Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size h=sqrt(3). The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in redeca, while y → ∞ results again in the pre-image deca (rescaled back down accordingly).
Incidence matrix according to Dynkin symbol
xo3yb3by3ox&#zh → height = 0 y > 0 (depending on truncation depth) b = y+3 (pseudo) (h-laced tegum sum of 2 inverted (x,y,b)-grips) o.3o.3o.3o. & | 120 | 1 1 2 | 1 3 2 | 3 1 ------------------+-----+-----------+-----------+------ x. .. .. .. & | 2 | 60 * * | 1 2 0 | 2 1 x .. y. .. .. & | 2 | * 60 * | 1 0 2 | 3 0 y oo3oo3oo3oo&#h | 2 | * * 120 | 0 2 1 | 2 1 h ------------------+-----+-----------+-----------+------ x.3y. .. .. & | 6 | 3 3 0 | 20 * * | 2 0 (x,y)-{6} xo .. .. ..&#h & | 3 | 1 0 2 | * 120 * | 1 1 xhh .. yb3by ..&#zh | 12 | 0 6 6 | * * 20 | 2 0 (y,h)-{12} ------------------+-----+-----------+-----------+------ xo3yb3by ..&#zh & ♦ 36 | 12 18 24 | 4 12 4 | 10 * dittet xo .. .. ox&#h ♦ 4 | 2 0 4 | 0 4 0 | * 30 disphenoid
© 2004-2024 | top of page |