Acronym | tiscad |
Name | truncated small-cellated-dodecateron |
Circumradius | sqrt[(3y2+12y+14)/3] |
Face vector | 240, 840, 1170, 660, 92 |
Confer |
Truncation would result in 3 different edge sizes in the outcome polyteron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size q=sqrt(2). The third one would be the arbitrary expansion size y (corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in the rescad, while y → ∞ results again in the pre-image scad (rescaled back down accordingly).
Incidence matrix according to Dynkin symbol
by3ox3oo3xo3yb&#zq → height = 0 y > 0 (arbitrary expansion size) b = y+2 (pseudo) o.3o.3o.3o.3o. | 120 * | 3 1 3 0 0 | 3 3 3 3 6 0 0 | 1 3 3 6 1 3 3 0 0 | 1 1 3 3 1 0 .o3.o3.o3.o3.o | * 120 | 0 0 3 1 3 | 0 0 3 6 3 3 3 | 0 0 6 3 3 3 1 3 1 | 0 3 3 1 1 1 -------------------+---------+-------------------+--------------------------+-------------------------------+---------------- .. .. .. x. .. | 2 0 | 180 * * * * | 2 1 0 0 2 0 0 | 1 2 0 2 0 1 2 0 0 | 1 0 1 2 1 0 .. .. .. .. y. | 2 0 | * 60 * * * | 0 3 3 0 0 0 0 | 0 3 3 6 0 0 0 0 0 | 1 1 3 3 0 0 oo3oo3oo3oo3oo&#q | 1 1 | * * 360 * * | 0 0 1 2 2 0 0 | 0 0 2 2 1 2 1 0 0 | 0 1 2 1 1 0 .y .. .. .. .. | 0 2 | * * * 60 * | 0 0 3 0 0 3 0 | 0 0 6 3 0 0 0 3 0 | 0 3 3 1 0 1 .. .x .. .. .. | 0 2 | * * * * 180 | 0 0 0 2 0 1 2 | 0 0 2 0 2 1 0 2 1 | 0 2 1 0 1 1 -------------------+---------+-------------------+--------------------------+-------------------------------+---------------- .. .. o.3x. .. | 3 0 | 3 0 0 0 0 | 120 * * * * * * | 1 1 0 0 0 0 1 0 0 | 1 0 0 1 1 0 .. .. .. x.3y. | 6 0 | 3 3 0 0 0 | * 60 * * * * * | 0 2 0 2 0 0 0 0 0 | 1 0 1 2 0 0 by .. .. .. yb&#zq | 4 4 | 0 2 4 2 0 | * * 90 * * * * | 0 0 2 2 0 0 0 0 0 | 0 1 2 1 0 0 .. ox .. .. ..&#q | 1 2 | 0 0 2 0 1 | * * * 360 * * * | 0 0 1 0 1 1 0 0 0 | 0 1 1 0 1 0 .. .. .. xo ..&#q | 2 1 | 1 0 2 0 0 | * * * * 360 * * | 0 0 0 1 0 1 1 0 0 | 0 0 1 1 1 0 .y3.x .. .. .. | 0 6 | 0 0 0 3 3 | * * * * * 60 * | 0 0 2 0 0 0 0 2 0 | 0 2 1 0 0 1 .. .x3.o .. .. | 0 3 | 0 0 0 0 3 | * * * * * * 120 | 0 0 0 0 1 0 0 1 1 | 0 1 0 0 1 1 -------------------+---------+-------------------+--------------------------+-------------------------------+---------------- .. o.3o.3x. .. | 4 0 | 6 0 0 0 0 | 4 0 0 0 0 0 0 | 30 * * * * * * * * | 1 0 0 0 1 0 tet .. .. o.3x.3y. | 12 0 | 12 6 0 0 0 | 4 4 0 0 0 0 0 | * 30 * * * * * * * | 1 0 0 1 0 0 (y,x)-tut by3ox .. .. yb&#zq | 6 12 | 0 3 12 6 6 | 0 0 3 6 0 2 0 | * * 60 * * * * * * | 0 1 1 0 0 0 titrip by .. .. xo3yb&#zq | 12 6 | 6 6 12 3 0 | 0 2 3 0 6 0 0 | * * * 60 * * * * * | 0 0 1 1 0 0 titrip .. ox3oo .. ..&#q | 1 3 | 0 0 3 0 3 | 0 0 0 3 0 0 1 | * * * * 120 * * * * | 0 1 0 0 1 0 3-pyr .. ox .. xo ..&#q | 2 2 | 1 0 4 0 1 | 0 0 0 2 2 0 0 | * * * * * 180 * * * | 0 0 1 0 1 0 2-ap .. .. oo3xo ..&#q | 3 1 | 3 0 3 0 0 | 1 0 0 0 3 0 0 | * * * * * * 120 * * | 0 0 0 1 1 0 3-pyr .y3.x3.o .. .. | 0 12 | 0 0 0 6 12 | 0 0 0 0 0 4 4 | * * * * * * * 30 * | 0 1 0 0 0 1 (y,x)-tut .. .x3.o3.o .. | 0 4 | 0 0 0 0 6 | 0 0 0 0 0 0 4 | * * * * * * * * 30 | 0 0 0 0 1 1 tet -------------------+---------+-------------------+--------------------------+-------------------------------+---------------- .. o.3o.3x.3y. | 20 0 | 30 10 0 0 0 | 20 10 0 0 0 0 0 | 5 5 0 0 0 0 0 0 0 | 6 * * * * * (y,x)-tip by3ox3oo .. yb&#zq | 8 24 | 0 4 24 12 24 | 0 0 6 24 0 8 8 | 0 0 4 0 8 0 0 2 0 | * 15 * * * * titepe by3ox .. xo3yb&#zq | 18 18 | 9 9 36 9 9 | 0 3 9 18 18 3 0 | 0 0 3 3 0 9 0 0 0 | * * 20 * * * tatriddip by .. oo3xo3yb&#zq | 24 8 | 24 12 24 4 0 | 8 8 6 0 24 0 0 | 0 2 0 4 0 0 8 0 0 | * * * 15 * * titepe .. ox3oo3xo ..&#q | 4 4 | 6 0 12 0 6 | 4 0 0 12 12 0 4 | 1 0 0 0 4 6 4 0 1 | * * * * 30 * scad-verf .y3.x3.o3.o .. | 0 20 | 0 0 0 10 30 | 0 0 0 0 0 10 20 | 0 0 0 0 0 0 0 5 5 | * * * * * 6 (y,x)-tip
© 2004-2024 | top of page |