Acronym | tiph |
Name |
triangular prismatic honeycomb, Delone complex of unit-stacked hexagonal lattice |
© © | |
Confer |
|
External links |
This honeycomb can be considered as the inifinite blend (or stack) of a single monostratic slab thereof, which is trattip.
Incidence matrix according to Dynkin symbol
x∞o x3o6o (N → ∞) . . . . . | N | 2 6 | 12 6 | 12 ----------+---+------+-------+--- x . . . . | 2 | N * | 6 0 | 6 . . x . . | 2 | * 3N | 2 2 | 4 ----------+---+------+-------+--- x . x . . | 4 | 2 2 | 3N * | 2 . . x3o . | 3 | 0 3 | * 2N | 2 ----------+---+------+-------+--- x . x3o . ♦ 6 | 3 6 | 3 2 | 2N
x∞x x3o6o (N → ∞) . . . . . | 2N | 1 1 6 | 6 6 6 | 6 6 ----------+----+--------+----------+------ x . . . . | 2 | N * * | 6 0 0 | 6 0 . x . . . | 2 | * N * | 0 6 0 | 0 6 . . x . . | 2 | * * 6N | 1 1 2 | 2 2 ----------+----+--------+----------+------ x . x . . | 4 | 2 0 2 | 3N * * | 2 0 . x x . . | 4 | 0 2 2 | * 3N * | 0 2 . . x3o . | 3 | 0 0 3 | * * 4N | 1 1 ----------+----+--------+----------+------ x . x3o . ♦ 6 | 3 0 6 | 3 0 2 | 2N * . x x3o . ♦ 6 | 0 3 6 | 0 3 2 | * 2N
x∞o x3o3o3*c (N → ∞) . . . . . | N | 2 6 | 12 3 3 | 6 6 -------------+---+------+--------+---- x . . . . | 2 | N * | 6 0 0 | 3 3 . . x . . | 2 | * 3N | 2 1 1 | 2 2 -------------+---+------+--------+---- x . x . . | 4 | 2 2 | 3N * * | 1 1 . . x3o . | 3 | 0 3 | * N * | 2 0 . . x . o3*c | 3 | 0 3 | * * N | 0 2 -------------+---+------+--------+---- x . x3o . ♦ 6 | 3 6 | 3 2 0 | N * x . x3o . ♦ 6 | 3 6 | 3 0 2 | * N
x∞x x3o3o3*c (N → ∞) . . . . . | 2N | 1 1 6 | 6 6 3 3 | 3 3 3 3 -------------+----+--------+-------------+-------- x . . . . | 2 | N * * | 6 0 0 0 | 3 3 0 0 . x . . . | 2 | * N * | 0 6 0 0 | 0 0 3 3 . . x . . | 2 | * * 6N | 1 1 1 1 | 1 1 1 1 -------------+----+--------+-------------+-------- x . x . . | 4 | 2 0 2 | 3N * * * | 1 1 0 0 . x x . . | 4 | 0 2 2 | * 3N * * | 0 0 1 1 . . x3o . | 3 | 0 0 3 | * * 2N * | 1 0 1 0 . . x . o3*c | 3 | 0 0 3 | * * * 2N | 0 1 0 1 -------------+----+--------+-------------+-------- x . x3o . ♦ 6 | 3 0 6 | 3 0 2 0 | N * * * x . x3o . ♦ 6 | 3 0 6 | 3 0 0 2 | * N * * . x x3o . ♦ 6 | 0 3 6 | 0 3 2 0 | * * N * . x x3o . ♦ 6 | 0 3 6 | 0 3 0 2 | * * * N
x∞o s3s3s3*c (N → ∞) . . demi( . . . ) | 3N | 2 2 2 2 | 1 1 1 4 4 4 3 | 2 2 2 6 ---------------------+----+-------------+-------------------+--------- x . demi( . . . ) | 2 | 3N * * * | 0 0 0 2 2 2 0 | 1 1 1 3 . . sefa( s3s . ) | 2 | * 3N * * | 1 0 0 2 0 0 1 | 2 0 0 2 . . sefa( s . s3*c ) | 2 | * * 3N * | 0 1 0 0 2 0 1 | 0 2 0 2 . . sefa( . s3s ) | 2 | * * * 3N | 0 0 1 0 0 2 1 | 0 0 2 2 ---------------------+----+-------------+-------------------+--------- . . s3s . ♦ 3 | 0 3 0 0 | N * * * * * * | 2 0 0 0 . . s . s3*c ♦ 3 | 0 0 3 0 | * N * * * * * | 0 2 0 0 . . . s3s ♦ 3 | 0 0 0 3 | * * N * * * * | 0 0 2 0 x . sefa( s3s . ) | 4 | 2 2 0 0 | * * * 3N * * * | 1 0 0 1 x . sefa( s . s3*c ) | 4 | 2 0 2 0 | * * * * 3N * * | 0 1 0 1 x . sefa( . s3s ) | 4 | 2 0 0 2 | * * * * * 3N * | 0 0 1 1 . . sefa( s3s3s3*c ) | 3 | 0 1 1 1 | * * * * * * 3N | 0 0 0 2 ---------------------+----+-------------+-------------------+--------- x . s3s . ♦ 6 | 3 6 0 0 | 2 0 0 3 0 0 0 | N * * * x . s . s3*c ♦ 6 | 3 0 6 0 | 0 2 0 0 3 0 0 | * N * * x . . s3s ♦ 6 | 3 0 0 6 | 0 0 2 0 0 3 0 | * * N * x . sefa( s3s3s3*c ) ♦ 6 | 3 2 2 2 | 0 0 0 1 1 1 2 | * * * 3N
x∞x s3s3s3*c (N → ∞) . . demi( . . . ) | 6N | 1 1 2 2 2 | 1 1 1 2 2 2 2 2 2 3 | 1 1 1 3 1 1 1 3 ---------------------+----+----------------+-------------------------------+------------------ x . demi( . . . ) | 2 | 3N * * * * | 0 0 0 2 2 2 0 0 0 0 | 1 1 1 3 0 0 0 0 . x demi( . . . ) | 2 | * 3N * * * | 0 0 0 0 0 0 2 2 2 0 | 0 0 0 0 1 1 1 3 . . sefa( s3s . ) | 2 | * * 6N * * | 1 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 0 0 1 . . sefa( s . s3*c ) | 2 | * * * 6N * | 0 1 0 0 1 0 0 1 0 1 | 0 1 0 1 0 1 0 1 . . sefa( . s3s ) | 2 | * * * * 6N | 0 0 1 0 0 1 0 0 1 1 | 0 0 1 1 0 0 1 1 ---------------------+----+----------------+-------------------------------+------------------ . . s3s . ♦ 3 | 0 0 3 0 0 | 2N * * * * * * * * * | 1 0 0 0 1 0 0 0 . . s . s3*c ♦ 3 | 0 0 0 3 0 | * 2N * * * * * * * * | 0 1 0 0 0 1 0 0 . . . s3s ♦ 3 | 0 0 0 0 3 | * * 2N * * * * * * * | 0 0 1 0 0 0 1 0 x . sefa( s3s . ) | 4 | 2 0 2 0 0 | * * * 3N * * * * * * | 1 0 0 1 0 0 0 0 x . sefa( s . s3*c ) | 4 | 2 0 0 2 0 | * * * * 3N * * * * * | 0 1 0 1 0 0 0 0 x . sefa( . s3s ) | 4 | 2 0 0 0 2 | * * * * * 3N * * * * | 0 0 1 1 0 0 0 0 . x sefa( s3s . ) | 4 | 0 2 2 0 0 | * * * * * * 3N * * * | 0 0 0 0 1 0 0 1 . x sefa( s . s3*c ) | 4 | 0 2 0 2 0 | * * * * * * * 3N * * | 0 0 0 0 0 1 0 1 . x sefa( . s3s ) | 4 | 0 2 0 0 2 | * * * * * * * * 3N * | 0 0 0 0 0 0 1 1 . . sefa( s3s3s3*c ) | 3 | 0 0 1 1 1 | * * * * * * * * * 6N | 0 0 0 1 0 0 0 1 ---------------------+----+----------------+-------------------------------+------------------ x . s3s . ♦ 6 | 3 0 6 0 0 | 2 0 0 3 0 0 0 0 0 0 | N * * * * * * * x . s . s3*c ♦ 6 | 3 0 0 6 0 | 0 2 0 0 3 0 0 0 0 0 | * N * * * * * * x . . s3s ♦ 6 | 3 0 0 0 6 | 0 0 2 0 0 3 0 0 0 0 | * * N * * * * * x . sefa( s3s3s3*c ) ♦ 6 | 3 0 2 2 2 | 0 0 0 1 1 1 0 0 0 2 | * * * 3N * * * * . x s3s . ♦ 6 | 0 3 6 0 0 | 2 0 0 0 0 0 3 0 0 0 | * * * * N * * * . x s . s3*c ♦ 6 | 0 3 0 6 0 | 0 2 0 0 0 0 0 3 0 0 | * * * * * N * * . x . s3s ♦ 6 | 0 3 0 0 6 | 0 0 2 0 0 0 0 0 3 0 | * * * * * * N * . x sefa( s3s3s3*c ) ♦ 6 | 0 3 2 2 2 | 0 0 0 0 0 0 1 1 1 2 | * * * * * * * 3N
© 2004-2024 | top of page |