Acronym tatoh
Name truncated tetrahedral-octahedral honeycomb,
truncated alternated cubic honeycomb,
cantic cubic honeycomb
 
 © ©    ©
Vertex figure
 ©
Confer
general polytopal classes:
partial Stott expansions  
External
links
pokemonkey   wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x3x3o *b4o   (N → ∞)

. . .    . | 12N |  1   4 |  4  2  2 |  2 2 1
-----------+-----+--------+----------+-------
x . .    . |   2 | 6N   * |  4  0  0 |  2 2 0
. x .    . |   2 |  * 24N |  1  1  1 |  1 1 1
-----------+-----+--------+----------+-------
x3x .    . |   6 |  3   3 | 8N  *  * |  1 1 0
. x3o    . |   3 |  0   3 |  * 8N  * |  1 0 1
. x . *b4o |   4 |  0   4 |  *  * 6N |  0 1 1
-----------+-----+--------+----------+-------
x3x3o    .   12 |  6  12 |  4  4  0 | 2N * *
x3x . *b4o   24 | 12  24 |  8  0  6 |  * N *
. x3o *b4o   12 |  0  24 |  0  8  6 |  * * N

x3x3o *b4/3o   (N → ∞)

. . .      . | 12N |  1   4 |  4  2  2 |  2 2 1
-------------+-----+--------+----------+-------
x . .      . |   2 | 6N   * |  4  0  0 |  2 2 0
. x .      . |   2 |  * 24N |  1  1  1 |  1 1 1
-------------+-----+--------+----------+-------
x3x .      . |   6 |  3   3 | 8N  *  * |  1 1 0
. x3o      . |   3 |  0   3 |  * 8N  * |  1 0 1
. x . *b4/3o |   4 |  0   4 |  *  * 6N |  0 1 1
-------------+-----+--------+----------+-------
x3x3o      .   12 |  6  12 |  4  4  0 | 2N * *
x3x . *b4/3o   24 | 12  24 |  8  0  6 |  * N *
. x3o *b4/3o   12 |  0  24 |  0  8  6 |  * * N

x3x3x3o3*a   (N → ∞)

. . . .    | 12N |   2  1   2 |  2  2  1  2  1 | 2 1 1 1
-----------+-----+------------+----------------+--------
x . . .    |   2 | 12N  *   * |  1  1  1  0  0 | 1 1 1 0
. x . .    |   2 |   * 6N   * |  2  0  0  2  0 | 2 1 0 1
. . x .    |   2 |   *  * 12N |  0  1  0  1  1 | 1 0 1 1
-----------+-----+------------+----------------+--------
x3x . .    |   6 |   3  3   0 | 4N  *  *  *  * | 1 1 0 0
x . x .    |   4 |   2  0   2 |  * 6N  *  *  * | 1 0 1 0
x . . o3*a |   3 |   3  0   0 |  *  * 4N  *  * | 0 1 1 0
. x3x .    |   6 |   0  3   3 |  *  *  * 4N  * | 1 0 0 1
. . x3o    |   3 |   0  0   3 |  *  *  *  * 4N | 0 0 1 1
-----------+-----+------------+----------------+--------
x3x3x .      24 |  12 12  12 |  4  6  0  4  0 | N * * *
x3x . o3*a   12 |  12  6   0 |  4  0  4  0  0 | * N * *
x . x3o3*a   12 |  12  0  12 |  0  6  4  0  4 | * * N *
. x3x3o      12 |   0  6  12 |  0  0  0  4  4 | * * * N

x3x3x3/2o3/2*a   (N → ∞)

. . .   .      | 12N |   2  1   2 |  2  2  1  2  1 | 2 1 1 1
---------------+-----+------------+----------------+--------
x . .   .      |   2 | 12N  *   * |  1  1  1  0  0 | 1 1 1 0
. x .   .      |   2 |   * 6N   * |  2  0  0  2  0 | 2 1 0 1
. . x   .      |   2 |   *  * 12N |  0  1  0  1  1 | 1 0 1 1
---------------+-----+------------+----------------+--------
x3x .   .      |   6 |   3  3   0 | 4N  *  *  *  * | 1 1 0 0
x . x   .      |   4 |   2  0   2 |  * 6N  *  *  * | 1 0 1 0
x . .   o3/2*a |   3 |   3  0   0 |  *  * 4N  *  * | 0 1 1 0
. x3x   .      |   6 |   0  3   3 |  *  *  * 4N  * | 1 0 0 1
. . x3/2o      |   3 |   0  0   3 |  *  *  *  * 4N | 0 0 1 1
---------------+-----+------------+----------------+--------
x3x3x   .        24 |  12 12  12 |  4  6  0  4  0 | N * * *
x3x .   o3/2*a   12 |  12  6   0 |  4  0  4  0  0 | * N * *
x . x3/2o3/2*a   12 |  12  0  12 |  0  6  4  0  4 | * * N *
. x3x3/2o        12 |   0  6  12 |  0  0  0  4  4 | * * * N

s4o3x4o   (N → ∞)

demi( . . . . ) | 12N |   4  1 |  2  2  4 | 1  2 2
----------------+-----+--------+----------+-------
demi( . . x . ) |   2 | 24N  * |  1  1  1 | 1  1 1
      s4o . .   |   2 |   * 6N |  0  0  4 | 0  2 2
----------------+-----+--------+----------+-------
demi( . o3x . ) |   3 |   3  0 | 8N  *  * | 1  1 0
demi( . . x4o ) |   4 |   4  0 |  * 6N  * | 1  0 1
sefa( s4o3x . ) |   6 |   3  3 |  *  * 8N | 0  1 1
----------------+-----+--------+----------+-------
demi( . o3x4o )   12 |  24  0 |  8  6  0 | N  * *
      s4o3x .     12 |  12  6 |  4  0  4 | * 2N *
sefa( s4o3x4o )   24 |  24 12 |  0  6  8 | *  * N

starting figure: x4o3x4o

x3x3o *b4s   (N → ∞)

demi( . . .    . ) | 12N |  1   2   2 |  2  1  2  2  1 | 1 2 1 1
-------------------+-----+------------+----------------+--------
demi( x . .    . ) |   2 | 6N   *   * |  2  0  0  1  0 | 1 2 0 1 x
demi( . x .    . ) |   2 |  * 12N   * |  1  1  1  0  0 | 1 1 1 0 x
sefa( . x . *b4s ) |   2 |  *   * 12N |  0  0  1  1  1 | 0 1 1 1 w
-------------------+-----+------------+----------------+--------
demi( x3x .    . ) |   6 |  3   3   0 | 4N  *  *  *  * | 1 1 0 0 x3x
demi( . x3o    . ) |   3 |  0   3   0 |  * 4N  *  *  * | 1 0 1 0 x3o
      . x . *b4s   |   4 |  0   2   2 |  *  * 6N  *  * | 0 1 1 0 x2w
sefa( x3x . *b4s ) |   6 |  3   0   3 |  *  *  * 4N  * | 0 1 0 1 x3w
sefa( . x3o *b4s ) |   3 |  0   0   3 |  *  *  *  * 4N | 0 0 1 1 w3o
-------------------+-----+------------+----------------+--------
demi( x3x3o    . )   12 |  6  12   0 |  4  4  0  0  0 | N * * *
      x3x . *b4s     24 | 12  12  12 |  4  0  6  4  0 | * N * *
      . x3o *b4s     12 |  0  12  12 |  0  4  6  0  4 | * * N *
sefa( x3x3o *b4s )   12 |  6   0  12 |  0  0  0  4  4 | * * * N

starting figure: x3x3o *b4x

© 2004-2024
top of page