Acronym | stapedit |
Name |
({5/2},{5})-duotegum, tegum product of a pentagon and a pentagram |
Face vector | 10, 35, 50, 25 |
External links |
As abstract polytope stapedit is automorph, thereby just interchanging the roles of the bases.
It either can be thought of as a 4D tegum product of the formers bases as in here, or as a degenerate 5D segmentotope with zero height, cf. {5} || perp {5/2}.
Incidence matrix according to Dynkin symbol
ox5oo xo5/2oo&#zx → height = 0 (tegum product of {5} and {5/2}) o.5o. o.5/2o. | 5 * | 2 5 0 | 5 10 | 10 .o5.o .o5/2.o | * 5 | 0 5 2 | 10 5 | 10 -----------------+-----+--------+-------+--- .. .. x. .. | 2 0 | 5 * * | 0 5 | 5 oo5oo oo5/2oo&#x | 1 1 | * 25 * | 2 2 | 4 .x .. .. .. | 0 2 | * * 5 | 5 0 | 5 -----------------+-----+--------+-------+--- ox .. .. ..&#x | 1 2 | 0 2 1 | 25 * | 2 .. .. xo ..&#x | 2 1 | 1 2 0 | * 25 | 2 -----------------+-----+--------+-------+--- ox .. xo ..&#x ♦ 2 2 | 1 4 1 | 2 2 | 25
© 2004-2025 | top of page |