Acronym | sobath |
Name | small biambotetrahedral honeycomb |
Especially | bamich (a=b=q, c=x) |
Confer |
This honeycomb is the general form of one of the 2 phases of the tegum sum of 2 inverted general rich variants, ao3ob3bo3oa3*a&#zc, here in fact the realm of 1 ≤ b:a < 3. The other one will be gobath for 3 < b:a < ∞.
Further there are singular transition cases too. The relevant ones for the current realm are the bordering cases case b:a = 1 (same topology, just special size ratio and thus higher symmetry) and case b:a = 3.
Incidence matrix according to Dynkin symbol
ao3ob3bo3oa3*a&#zc (N → ∞) →height = 0 c = sqrt[(3a2-2ab+3b2)/8] 1 ≤ b:a < 3 (a ≤ b without loss of generality) (tegum sum of 2 inverted (a,b)-richs) o.3o.3o.3o.3*a & | 6N | 4 4 4 | 2 2 2 2 6 6 | 1 1 4 2 2 ---------------------+----+-------------+---------------------+------------- a. .. .. .. & | 2 | 12N * * | 1 1 0 0 1 0 | 1 0 1 1 0 .. .. b. .. & | 2 | * 12N * | 0 0 1 1 0 1 | 0 1 1 0 1 oo3oo3oo3oo3*a&#c | 2 | * * 12N | 0 0 0 0 2 2 | 0 0 2 1 1 ---------------------+----+-------------+---------------------+------------- a.3o. .. .. & | 3 | 3 0 0 | 4N * * * * * | 1 0 1 0 0 a. .. .. o.3*a & | 3 | 3 0 0 | * 4N * * * * | 1 0 0 1 0 .. o.3b. .. & | 3 | 0 3 0 | * * 4N * * * | 0 1 0 0 1 .. .. b.3o. & | 3 | 0 3 0 | * * * 4N * * | 0 1 1 0 0 ao .. .. .. &#c & | 3 | 1 0 2 | * * * * 12N * | 0 0 1 1 0 .. ob .. .. &#c & | 3 | 0 1 2 | * * * * * 12N | 0 0 1 0 1 ---------------------+----+-------------+---------------------+------------- a.3o. .. o.3*a & | 6 | 12 0 0 | 4 4 0 0 0 0 | N * * * * a-oct .. o.3b.3o. & | 6 | 0 12 0 | 0 0 4 4 0 0 | * N * * * b-oct ao3ob .. .. &#c & | 6 | 3 3 6 | 1 0 0 1 3 3 | * * 4N * * triangular antipodium ao .. .. oa3*a&#c | 6 | 6 0 6 | 0 2 0 0 6 0 | * * * 2N * tall trap .. ob3bo .. &#c | 6 | 0 6 6 | 0 0 2 0 0 6 | * * * * 2N shallow trap
© 2004-2025 | top of page |