Acronym | sissiddip |
Name | small-stellated-dodecahedron prism |
Cross sections |
© |
Circumradius | sqrt[(7-sqrt(5))/8] = 0.771681 |
Colonel of regiment | (is itself locally convex – other uniform polychoral member: gipe) |
Dihedral angles | |
Face vector | 24, 72, 54, 14 |
Confer |
|
External links |
As abstract polytope sissiddip is isomorphic to gaddip, thereby replacing pentagrams by pentagons resp. replacing sissid by gad and stip by pip.
Incidence matrix according to Dynkin symbol
x x5/2o5o . . . . | 24 | 1 5 | 5 5 | 5 1 ----------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x5/2o . | 5 | 0 5 | * 24 | 1 1 ----------+----+-------+-------+----- x x5/2o . ♦ 10 | 5 10 | 5 2 | 12 * . x5/2o5o ♦ 12 | 0 30 | 0 12 | * 2
x x5/2o5/4o . . . . | 24 | 1 5 | 5 5 | 5 1 ------------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 ------------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x5/2o . | 5 | 0 5 | * 24 | 1 1 ------------+----+-------+-------+----- x x5/2o . ♦ 10 | 5 10 | 5 2 | 12 * . x5/2o5/4o ♦ 12 | 0 30 | 0 12 | * 2
x x5/3o5o . . . . | 24 | 1 5 | 5 5 | 5 1 ----------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 ----------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x5/3o . | 5 | 0 5 | * 24 | 1 1 ----------+----+-------+-------+----- x x5/3o . ♦ 10 | 5 10 | 5 2 | 12 * . x5/3o5o ♦ 12 | 0 30 | 0 12 | * 2
x x5/3o5/4o . . . . | 24 | 1 5 | 5 5 | 5 1 ------------+----+-------+-------+----- x . . . | 2 | 12 * | 5 0 | 5 0 . x . . | 2 | * 60 | 1 2 | 2 1 ------------+----+-------+-------+----- x x . . | 4 | 2 2 | 30 * | 2 0 . x5/3o . | 5 | 0 5 | * 24 | 1 1 ------------+----+-------+-------+----- x x5/3o . ♦ 10 | 5 10 | 5 2 | 12 * . x5/3o5/4o ♦ 12 | 0 30 | 0 12 | * 2
xx5/2oo5oo&#x → height = 1
(sissid || sissid)
o.5/2o.5o. | 12 * | 5 1 0 | 5 5 0 | 1 5 0
.o5/2.o5.o | * 12 | 0 1 5 | 0 5 5 | 0 5 1
--------------+-------+----------+----------+-------
x. .. .. | 2 0 | 30 * * | 2 1 0 | 1 2 0
oo5/2oo5oo&#x | 1 1 | * 12 * | 0 5 0 | 0 5 0
.x .. .. | 0 2 | * * 30 | 0 1 2 | 0 2 1
--------------+-------+----------+----------+-------
x.5/2o. .. | 5 0 | 5 0 0 | 12 * * | 1 1 0
xx .. ..&#x | 2 2 | 1 2 1 | * 30 * | 0 2 0
.x5/2.o .. | 0 5 | 0 0 5 | * * 12 | 0 1 1
--------------+-------+----------+----------+-------
x.5/2o.5o. ♦ 12 0 | 30 0 0 | 12 0 0 | 1 * *
xx5/2oo ..&#x ♦ 5 5 | 5 5 5 | 1 5 1 | * 12 *
.x5/2.o5.o ♦ 0 12 | 0 0 30 | 0 0 12 | * * 1
© 2004-2024 | top of page |