Acronym sissiddip
Name small-stellated-dodecahedron prism
Cross sections
 ©
Circumradius sqrt[(7-sqrt(5))/8] = 0.771681
Colonel of regiment (is itself locally convex – other uniform polychoral member: gipe)
Dihedral angles
  • at {4} between stip and stip:   arccos(-1/sqrt(5)) = 116.565051°
  • at {5/2} between sissid and stip:   90°
Face vector 24, 72, 54, 14
Confer
scaliform relative:
hossdap  
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope sissiddip is isomorphic to gaddip, thereby replacing pentagrams by pentagons resp. replacing sissid by gad and stip by pip.


Incidence matrix according to Dynkin symbol

x x5/2o5o

. .   . . | 24 |  1  5 |  5  5 |  5 1
----------+----+-------+-------+-----
x .   . . |  2 | 12  * |  5  0 |  5 0
. x   . . |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x x   . . |  4 |  2  2 | 30  * |  2 0
. x5/2o . |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x x5/2o .  10 |  5 10 |  5  2 | 12 *
. x5/2o5o  12 |  0 30 |  0 12 |  * 2

x x5/2o5/4o

. .   .   . | 24 |  1  5 |  5  5 |  5 1
------------+----+-------+-------+-----
x .   .   . |  2 | 12  * |  5  0 |  5 0
. x   .   . |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x x   .   . |  4 |  2  2 | 30  * |  2 0
. x5/2o   . |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x x5/2o   .  10 |  5 10 |  5  2 | 12 *
. x5/2o5/4o  12 |  0 30 |  0 12 |  * 2

x x5/3o5o

. .   . . | 24 |  1  5 |  5  5 |  5 1
----------+----+-------+-------+-----
x .   . . |  2 | 12  * |  5  0 |  5 0
. x   . . |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x x   . . |  4 |  2  2 | 30  * |  2 0
. x5/3o . |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x x5/3o .  10 |  5 10 |  5  2 | 12 *
. x5/3o5o  12 |  0 30 |  0 12 |  * 2

x x5/3o5/4o

. .   .   . | 24 |  1  5 |  5  5 |  5 1
------------+----+-------+-------+-----
x .   .   . |  2 | 12  * |  5  0 |  5 0
. x   .   . |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x x   .   . |  4 |  2  2 | 30  * |  2 0
. x5/3o   . |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x x5/3o   .  10 |  5 10 |  5  2 | 12 *
. x5/3o5/4o  12 |  0 30 |  0 12 |  * 2

xx5/2oo5oo&#x   → height = 1
(sissid || sissid)

o.5/2o.5o.    | 12  * |  5  1  0 |  5  5  0 | 1  5 0
.o5/2.o5.o    |  * 12 |  0  1  5 |  0  5  5 | 0  5 1
--------------+-------+----------+----------+-------
x.   .. ..    |  2  0 | 30  *  * |  2  1  0 | 1  2 0
oo5/2oo5oo&#x |  1  1 |  * 12  * |  0  5  0 | 0  5 0
.x   .. ..    |  0  2 |  *  * 30 |  0  1  2 | 0  2 1
--------------+-------+----------+----------+-------
x.5/2o. ..    |  5  0 |  5  0  0 | 12  *  * | 1  1 0
xx   .. ..&#x |  2  2 |  1  2  1 |  * 30  * | 0  2 0
.x5/2.o ..    |  0  5 |  0  0  5 |  *  * 12 | 0  1 1
--------------+-------+----------+----------+-------
x.5/2o.5o.     12  0 | 30  0  0 | 12  0  0 | 1  * *
xx5/2oo ..&#x   5  5 |  5  5  5 |  1  5  1 | * 12 *
.x5/2.o5.o      0 12 |  0  0 30 |  0  0 12 | *  * 1

© 2004-2025
top of page