Acronym sidrebcu Name stellidodecahedral rectibicupola,orbiform bistratc stack of small stellated dodecahedron atop pseudo dodecadodecahedron atop great dodecahedron Circumradius sqrt[(8+2 sqrt(5))/11] = 1.064815 Dihedral angles at {5} between pap and peppy:   arccos((7-4 sqrt(5))/2) = 166.442696° at {5/2} between sissid and stap:   arccos(-sqrt[sqrt(5)/4]) = 138.389326° at {5/2} between stap and stappy:   arccos(-sqrt[(7 sqrt(5)-15)/2]) = 124.832022° at {5} between gad and pap:   arccos(-sqrt[(9-4 sqrt(5))/4]) = 96.778652° at {3} between pap and pap:   ... at {3} between pap and stappy:   ... at {3} between peppy and stap:   ... at {3} between stap and stap:   ... Confer orbiform relative: gaddadid   sissidadid

As abstract polytope it is automorph, thereby just reverting the axial sequence.

Incidence matrix according to Dynkin symbol

```xoo5/2oxo5oox&#xt   → height(1,2) = sqrt[(5 sqrt(5)-9)/8] = 0.522056
height(2,3) = sqrt[(3 sqrt(5)-1)/8] = 0.844704
(sissid || (pseudo) did || gad)

o..5/2o..5o..    | 12  *  * |  5  5  0  0  0 |  5  5  5  0  0  0  0  0 | 1  5  1  0  0 0
.o.5/2o.o5.o.    |  * 30  * |  0  2  4  2  0 |  0  1  4  2  2  4  1  0 | 0  2  2  2  2 0
..o5/2..o5..o    |  *  * 12 |  0  0  0  5  5 |  0  0  0  0  0  5  5  5 | 0  0  0  1  5 1
-----------------+----------+----------------+-------------------------+----------------
x..   ... ...    |  2  0  0 | 30  *  *  *  * |  2  1  0  0  0  0  0  0 | 1  2  0  0  0 0
oo.5/2oo.5oo.&#x |  1  1  0 |  * 60  *  *  * |  0  1  2  0  0  0  0  0 | 0  2  1  0  0 0
...   .x. ...    |  0  2  0 |  *  * 60  *  * |  0  0  1  1  1  1  0  0 | 0  1  1  1  1 0
.oo5/2.oo5.oo&#x |  0  1  1 |  *  *  * 60  * |  0  0  0  0  0  2  1  0 | 0  0  0  1  2 0
...   ... ..x    |  0  0  2 |  *  *  *  * 30 |  0  0  0  0  0  0  1  2 | 0  0  0  0  2 1
-----------------+----------+----------------+-------------------------+----------------
x..5/2o.. ...    |  5  0  0 |  5  0  0  0  0 | 12  *  *  *  *  *  *  * | 1  1  0  0  0 0
xo.   ... ...&#x |  2  1  0 |  1  2  0  0  0 |  * 30  *  *  *  *  *  * | 0  2  0  0  0 0
...   ox. ...&#x |  1  2  0 |  0  2  1  0  0 |  *  * 60  *  *  *  *  * | 0  1  1  0  0 0
.o.5/2.x. ...    |  0  5  0 |  0  0  5  0  0 |  *  *  * 12  *  *  *  * | 0  1  0  1  0 0
...   .x.5.o.    |  0  5  0 |  0  0  5  0  0 |  *  *  *  * 12  *  *  * | 0  0  1  0  1 0
...   .xo ...&#x |  0  2  1 |  0  0  1  2  0 |  *  *  *  *  * 60  *  * | 0  0  0  1  1 0
...   ... .ox&#x |  0  1  2 |  0  0  0  2  1 |  *  *  *  *  *  * 30  * | 0  0  0  0  2 0
...   ..o5..x    |  0  0  5 |  0  0  0  0  5 |  *  *  *  *  *  *  * 12 | 0  0  0  0  1 1
-----------------+----------+----------------+-------------------------+----------------
x..5/2o..5o..    ♦ 12  0  0 | 30  0  0  0  0 | 12  0  0  0  0  0  0  0 | 1  *  *  *  * *
xo.5/2ox. ...&#x ♦  5  5  0 |  5 10  5  0  0 |  1  5  5  1  0  0  0  0 | * 12  *  *  * *
...   ox.5oo.&#x ♦  1  5  0 |  0  5  5  0  0 |  0  0  5  0  1  0  0  0 | *  * 12  *  * *
.oo5/2.xo ...&#x ♦  0  5  1 |  0  0  5  5  0 |  0  0  0  1  0  5  0  0 | *  *  * 12  * *
...   .xo5.ox&#x ♦  0  5  5 |  0  0  5 10  5 |  0  0  0  0  1  5  5  1 | *  *  *  * 12 *
..o5/2..o5..x    ♦  0  0 12 |  0  0  0  0 30 |  0  0  0  0  0  0  0 12 | *  *  *  *  * 1
```