Acronym | scyropot |
Name |
small cyclorhombated pentachoric tetrachomb, small prismatodispentachoric tetracomb, cantellated pentachoric tetrachomb |
External links |
By virtue of an outer symmetry this is a non-quasiregular monotoxal tetracomb, that is all edges belong to the same equivalence class.
Incidence matrix according to Dynkin symbol
x3o3x3o3o3*a (N → ∞) . . . . . | 10N | 6 6 | 3 12 6 3 6 | 6 3 6 6 2 3 2 | 3 3 1 2 1 -------------+-----+---------+---------------------+------------------------+---------- x . . . . | 2 | 30N * | 1 2 2 0 0 | 2 2 1 2 1 0 0 | 1 2 1 1 0 . . x . . | 2 | * 30N | 0 2 0 1 2 | 2 0 2 1 0 2 1 | 2 1 0 1 1 -------------+-----+---------+---------------------+------------------------+---------- x3o . . . | 3 | 3 0 | 10N * * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 x . x . . | 4 | 2 2 | * 30N * * * | 1 0 1 1 0 0 0 | 1 1 0 1 0 x . . . o3*a | 3 | 3 0 | * * 20N * * | 0 1 0 1 1 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 | * * * 10N * | 2 0 0 0 0 2 0 | 2 1 0 0 1 . . x3o . | 3 | 0 3 | * * * * 20N | 0 0 1 0 0 1 1 | 1 0 0 1 1 -------------+-----+---------+---------------------+------------------------+---------- x3o3x . . ♦ 12 | 12 12 | 4 6 0 4 0 | 5N * * * * * * | 1 1 0 0 0 x3o . . o3*a ♦ 6 | 12 0 | 4 0 4 0 0 | * 5N * * * * * | 0 1 1 0 0 x . x3o . ♦ 6 | 3 6 | 0 3 0 0 2 | * * 10N * * * * | 1 0 0 1 0 x . x . o3*a ♦ 6 | 6 3 | 0 3 2 0 0 | * * * 10N * * * | 0 1 0 1 0 x . . o3o3*a ♦ 4 | 6 0 | 0 0 4 0 0 | * * * * 5N * * | 0 0 1 1 0 . o3x3o . ♦ 6 | 0 12 | 0 0 0 4 4 | * * * * * 5N * | 1 0 0 0 1 . . x3o3o ♦ 4 | 0 6 | 0 0 0 0 4 | * * * * * * 5N | 0 0 0 1 1 -------------+-----+---------+---------------------+------------------------+---------- x3o3x3o . ♦ 30 | 30 60 | 10 30 0 20 20 | 5 0 10 0 0 5 0 | N * * * * x3o3x . o3*a ♦ 30 | 60 30 | 20 30 20 10 0 | 5 5 0 10 0 0 0 | * N * * * x3o . o3o3*a ♦ 10 | 30 0 | 10 0 20 0 0 | 0 5 0 0 5 0 0 | * * N * * x . x3o3o3*a ♦ 20 | 30 30 | 0 30 20 0 20 | 0 0 10 10 5 0 5 | * * * N * . o3x3o3o ♦ 10 | 0 30 | 0 0 0 10 20 | 0 0 0 0 0 5 5 | * * * * N
or . . . . . | 10N | 12 | 6 12 12 | 6 6 12 4 | 6 2 2 ----------------+-----+-----+-------------+----------------+-------- x . . . . & | 2 | 60N | 1 2 2 | 2 2 3 1 | 3 1 1 ----------------+-----+-----+-------------+----------------+-------- x3o . . . & | 3 | 3 | 20N * * | 2 2 0 0 | 3 1 0 x . x . . | 4 | 4 | * 30N * | 1 0 2 0 | 2 0 1 x . . . o3*a & | 3 | 3 | * * 40N | 0 1 1 1 | 1 1 1 ----------------+-----+-----+-------------+----------------+-------- x3o3x . . ♦ 12 | 24 | 8 6 0 | 5N * * * | 2 0 0 x3o . . o3*a & ♦ 6 | 12 | 4 0 4 | * 10N * * | 1 1 0 x . x3o . & ♦ 6 | 9 | 0 3 2 | * * 20N * | 1 0 1 x . . o3o3*a & ♦ 4 | 6 | 0 0 4 | * * * 10N | 0 1 1 ----------------+-----+-----+-------------+----------------+-------- x3o3x3o . & ♦ 30 | 90 | 30 30 20 | 5 5 10 0 | 2N * * x3o . o3o3*a & ♦ 10 | 30 | 10 0 20 | 0 5 0 5 | * 2N * x . x3o3o3*a ♦ 20 | 60 | 0 30 40 | 0 0 20 10 | * * N
© 2004-2025 | top of page |