Acronym scyropot
Name small cyclorhombated pentachoric tetrachomb,
small prismatodispentachoric tetracomb,
cantellated pentachoric tetrachomb
External
links
wikipedia   polytopewiki

By virtue of an outer symmetry this is a non-quasiregular monotoxal tetracomb, that is all edges belong to the same equivalence class.


Incidence matrix according to Dynkin symbol

x3o3x3o3o3*a   (N → ∞)

. . . . .    | 10N |   6   6 |   3  12   6   3   6 |  6  3   6   6  2  3  2 | 3 3 1 2 1
-------------+-----+---------+---------------------+------------------------+----------
x . . . .    |   2 | 30N   * |   1   2   2   0   0 |  2  2   1   2  1  0  0 | 1 2 1 1 0
. . x . .    |   2 |   * 30N |   0   2   0   1   2 |  2  0   2   1  0  2  1 | 2 1 0 1 1
-------------+-----+---------+---------------------+------------------------+----------
x3o . . .    |   3 |   3   0 | 10N   *   *   *   * |  2  2   0   0  0  0  0 | 1 2 1 0 0
x . x . .    |   4 |   2   2 |   * 30N   *   *   * |  1  0   1   1  0  0  0 | 1 1 0 1 0
x . . . o3*a |   3 |   3   0 |   *   * 20N   *   * |  0  1   0   1  1  0  0 | 0 1 1 1 0
. o3x . .    |   3 |   0   3 |   *   *   * 10N   * |  2  0   0   0  0  2  0 | 2 1 0 0 1
. . x3o .    |   3 |   0   3 |   *   *   *   * 20N |  0  0   1   0  0  1  1 | 1 0 0 1 1
-------------+-----+---------+---------------------+------------------------+----------
x3o3x . .      12 |  12  12 |   4   6   0   4   0 | 5N  *   *   *  *  *  * | 1 1 0 0 0
x3o . . o3*a    6 |  12   0 |   4   0   4   0   0 |  * 5N   *   *  *  *  * | 0 1 1 0 0
x . x3o .       6 |   3   6 |   0   3   0   0   2 |  *  * 10N   *  *  *  * | 1 0 0 1 0
x . x . o3*a    6 |   6   3 |   0   3   2   0   0 |  *  *   * 10N  *  *  * | 0 1 0 1 0
x . . o3o3*a    4 |   6   0 |   0   0   4   0   0 |  *  *   *   * 5N  *  * | 0 0 1 1 0
. o3x3o .       6 |   0  12 |   0   0   0   4   4 |  *  *   *   *  * 5N  * | 1 0 0 0 1
. . x3o3o       4 |   0   6 |   0   0   0   0   4 |  *  *   *   *  *  * 5N | 0 0 0 1 1
-------------+-----+---------+---------------------+------------------------+----------
x3o3x3o .      30 |  30  60 |  10  30   0  20  20 |  5  0  10   0  0  5  0 | N * * * *
x3o3x . o3*a   30 |  60  30 |  20  30  20  10   0 |  5  5   0  10  0  0  0 | * N * * *
x3o . o3o3*a   10 |  30   0 |  10   0  20   0   0 |  0  5   0   0  5  0  0 | * * N * *
x . x3o3o3*a   20 |  30  30 |   0  30  20   0  20 |  0  0  10  10  5  0  5 | * * * N *
. o3x3o3o      10 |   0  30 |   0   0   0  10  20 |  0  0   0   0  0  5  5 | * * * * N
or
. . . . .       | 10N |  12 |   6  12  12 |  6   6  12   4 |  6  2 2
----------------+-----+-----+-------------+----------------+--------
x . . . .     & |   2 | 60N |   1   2   2 |  2   2   3   1 |  3  1 1
----------------+-----+-----+-------------+----------------+--------
x3o . . .     & |   3 |   3 | 20N   *   * |  2   2   0   0 |  3  1 0
x . x . .       |   4 |   4 |   * 30N   * |  1   0   2   0 |  2  0 1
x . . . o3*a  & |   3 |   3 |   *   * 40N |  0   1   1   1 |  1  1 1
----------------+-----+-----+-------------+----------------+--------
x3o3x . .         12 |  24 |   8   6   0 | 5N   *   *   * |  2  0 0
x3o . . o3*a  &    6 |  12 |   4   0   4 |  * 10N   *   * |  1  1 0
x . x3o .     &    6 |   9 |   0   3   2 |  *   * 20N   * |  1  0 1
x . . o3o3*a  &    4 |   6 |   0   0   4 |  *   *   * 10N |  0  1 1
----------------+-----+-----+-------------+----------------+--------
x3o3x3o .     &   30 |  90 |  30  30  20 |  5   5  10   0 | 2N  * *
x3o . o3o3*a  &   10 |  30 |  10   0  20 |  0   5   0   5 |  * 2N *
x . x3o3o3*a      20 |  60 |   0  30  40 |  0   0  20  10 |  *  * N

© 2004-2024
top of page