Acronym ...
Name tetrahedral - hexagon-prismantiprismoid
Circumradius ...
Face vector 48, 192, 308, 204, 42
Confer
more general:
s2nx2o3o4s  
general polytopal classes:
isogonal  
External
links
polytopewiki

This isogonal polyteron is obtained by hemiation of twacube. But because of lower degree of freedom the resulting edge sizes cannot be made all alike.


Incidence matrix according to Dynkin symbol

s6x2o3o4s

demi( . . . . . ) | 48 |  1  3  3  1 | 1  3  6   9  3 |  3  3  1  9  4  3 | 3 1 1  4
------------------+----+-------------+----------------+-------------------+---------
demi( . x . . . ) |  2 | 24  *  *  * | 1  3  3   0  0 |  3  0  0  6  0  3 | 3 0 1  3  x
      s . 2 . s   |  2 |  * 72  *  * | 0  0  2   4  0 |  1  2  0  4  2  0 | 2 1 0  2  q
      . . . o4s   |  2 |  *  * 72  * | 0  1  0   2  2 |  0  1  1  2  2  2 | 1 1 1  2  q
sefa( s6x . . . ) |  2 |  *  *  * 24 | 1  0  3   0  0 |  3  0  0  3  0  0 | 3 0 0  1  e = 1+sqrt(3)
------------------+----+-------------+----------------+-------------------+---------
      s6x . . .   |  6 |  3  0  0  3 | 8  *  *   *  * |  3  0  0  0  0  0 | 3 0 0  0  x3e
      . x 2 o4s   |  4 |  2  0  2  0 | * 36  *   *  * |  0  0  0  2  0  2 | 1 0 1  2  x2q
sefa( s6x 2 . s ) |  4 |  1  2  0  1 | *  * 72   *  * |  1  0  0  2  0  0 | 2 0 0  1  xe&#q
sefa( s . 2 o4s ) |  3 |  0  2  1  0 | *  *  * 144  * |  0  1  0  1  1  0 | 1 1 0  1  q3o
sefa( . . o3o4s ) |  3 |  0  0  3  0 | *  *  *   * 48 |  0  0  1  0  1  1 | 0 1 1  1  q3o
------------------+----+-------------+----------------+-------------------+---------
      s6x 2 . s   | 12 |  6  6  0  6 | 2  0  6   0  0 | 12  *  *  *  *  * | 2 0 0  0  xe2ex&#q (ditra)
      s . 2 o4s   |  4 |  0  4  2  0 | 0  0  0   4  0 |  * 36  *  *  *  * | 1 1 0  0  q-tet
      . . o3o4s   |  4 |  0  0  6  0 | 0  0  0   0  4 |  *  * 12  *  *  * | 0 1 1  0  q-tet
sefa( s6x 2 o4s ) |  6 |  2  4  2  1 | 0  1  2   2  0 |  *  *  * 72  *  * | 1 0 0  1  ex2oq&#q (wedge-like trip variant)
sefa( s 2 o3o4s ) |  4 |  0  3  3  0 | 0  0  0   3  1 |  *  *  *  * 48  * | 0 1 0  1  q-tet
sefa( . x2o3o4s ) |  6 |  3  0  6  0 | 0  3  0   0  2 |  *  *  *  *  * 24 | 0 0 1  1  x q3o (trip variant)
------------------+----+-------------+----------------+-------------------+---------
      s6x 2 o4s   | 24 | 12 24 12 12 | 4  6 24  24  0 |  4  6  0 12  0  0 | 6 * *  *  2-6 prismantiprismoid
      s 2 o3o4s   |  8 |  0 12 12  0 | 0  0  0  24  8 |  0  6  2  0  8  0 | * 6 *  *  q-hex
      . x2o3o4s   |  8 |  4  0 12  0 | 0  6  0   0  8 |  0  0  2  0  0  4 | * * 6  *  x q3o3o (tepe variant)
sefa( s6x2o3o4s ) |  8 |  3  6  6  1 | 0  3  3   6  2 |  0  0  0  3  2  1 | * * * 24  ex2oq3oo&#q (tepe variant)

starting figure: x6x o3o4x

© 2004-2024
top of page