Acronym ...
Name β3β5o3o (?)
Circumradius ...

This hyperbolic honeycomb is obtained by alternated holo-faceting as alternation of its vertices. When starting directly from x3x5o3o mere faceting results in a non-uniform variant. Whereas, when starting from its y3v5o3o variant instead, where y = (1-sqrt(5)+sqrt[6 sqrt(5)-2])/4 = 0.535687 and v = 1/f = 0.618034, mere faceting would result indeed in a corresponding uniform holosnub!


Incidence matrix according to Dynkin symbol

β3β5o3o   (N → ∞)


both( . . . . ) | 20N |   6   6 |   3   3   9   3 | 3 1   4
----------------+-----+---------+-----------------+--------
sefa( β3β . . ) |   2 | 60N   * |   1   0   2   0 | 2 0   1
sefa( . β5o . ) |   2 |   * 60N |   0   1   1   1 | 1 1   1
----------------+-----+---------+-----------------+--------
both( s3s . . )    3 |   3   0 | 20N   *   *   * | 2 0   0
      . β5o .      5 |   0   5 |   * 12N   *   * | 1 1   0
sefa( β3β5o . ) |   3 |   2   1 |   *   * 60N   * | 1 0   1
sefa( . β5o3o ) |   3 |   0   3 |   *   *   * 20N | 0 1   1
----------------+-----+---------+-----------------+--------
      β3β5o .     60 | 120  60 |  40  12  60   0 | N *   *
      . β5o3o     20 |   0  60 |   0  12   0  20 | * N   *
sefa( β3β5o3o )    4 |   3   3 |   0   0   3   1 | * * 20N

starting figure: x3x5o3o

© 2004-2025
top of page