Acronym | ... |
Name | β3β5o3o (?) |
Circumradius | ... |
This hyperbolic honeycomb is obtained by alternated holo-faceting as alternation of its vertices. When starting directly from x3x5o3o mere faceting results in a non-uniform variant. Whereas, when starting from its y3v5o3o variant instead, where y = (1-sqrt(5)+sqrt[6 sqrt(5)-2])/4 = 0.535687 and v = 1/f = 0.618034, mere faceting would result indeed in a corresponding uniform holosnub!
Incidence matrix according to Dynkin symbol
β3β5o3o (N → ∞) both( . . . . ) | 20N | 6 6 | 3 3 9 3 | 3 1 4 ----------------+-----+---------+-----------------+-------- sefa( β3β . . ) | 2 | 60N * | 1 0 2 0 | 2 0 1 sefa( . β5o . ) | 2 | * 60N | 0 1 1 1 | 1 1 1 ----------------+-----+---------+-----------------+-------- both( s3s . . ) ♦ 3 | 3 0 | 20N * * * | 2 0 0 . β5o . ♦ 5 | 0 5 | * 12N * * | 1 1 0 sefa( β3β5o . ) | 3 | 2 1 | * * 60N * | 1 0 1 sefa( . β5o3o ) | 3 | 0 3 | * * * 20N | 0 1 1 ----------------+-----+---------+-----------------+-------- β3β5o . ♦ 60 | 120 60 | 40 12 60 0 | N * * . β5o3o ♦ 20 | 0 60 | 0 12 0 20 | * N * sefa( β3β5o3o ) ♦ 4 | 3 3 | 0 0 3 1 | * * 20N starting figure: x3x5o3o
© 2004-2025 | top of page |