Acronym | ricot |
Name | rectified icositetrachoric tetracomb |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
o3x4o3o3o (N → ∞) . . . . . | 24N | 8 | 4 12 | 6 8 | 4 2 ----------+-----+-----+---------+---------+----- . x . . . | 2 | 96N | 1 3 | 3 3 | 3 1 ----------+-----+-----+---------+---------+----- o3x . . . | 3 | 3 | 32N * | 3 0 | 3 0 . x4o . . | 4 | 4 | * 72N | 1 2 | 2 1 ----------+-----+-----+---------+---------+----- o3x4o . . ♦ 12 | 24 | 8 6 | 12N * | 2 0 . x4o3o . ♦ 8 | 12 | 0 6 | * 24N | 1 1 ----------+-----+-----+---------+---------+----- o3x4o3o . ♦ 96 | 288 | 96 144 | 24 24 | N * . x4o3o3o ♦ 16 | 32 | 0 24 | 0 8 | * 3N
o3o4x3o3x (N → ∞) . . . . . | 96N | 6 2 | 6 3 6 1 | 2 3 6 3 | 1 2 3 ----------+-----+----------+-------------------+-----------------+--------- . . x . . | 2 | 288N * | 2 1 1 0 | 1 2 2 1 | 1 1 2 . . . . x | 2 | * 96N | 0 0 3 1 | 0 0 3 3 | 0 1 3 ----------+-----+----------+-------------------+-----------------+--------- . o4x . . | 4 | 4 0 | 144N * * * | 1 1 1 0 | 1 1 1 . . x3o . | 3 | 3 0 | * 96N * * | 0 2 0 1 | 1 0 2 . . x . x | 4 | 2 2 | * * 144N * | 0 0 2 1 | 0 1 2 . . . o3x | 3 | 0 3 | * * * 32N | 0 0 0 3 | 0 0 3 ----------+-----+----------+-------------------+-----------------+--------- o3o4x . . ♦ 8 | 12 0 | 6 0 0 0 | 24N * * * | 1 1 0 . o4x3o . ♦ 12 | 24 0 | 6 8 0 0 | * 24N * * | 1 0 1 . o4x . x ♦ 8 | 8 4 | 2 0 4 0 | * * 72N * | 0 1 1 . . x3o3x ♦ 12 | 12 12 | 0 4 6 4 | * * * 24N | 0 0 2 ----------+-----+----------+-------------------+-----------------+--------- o3o4x3o . ♦ 96 | 288 0 | 144 96 0 0 | 24 24 0 0 | N * * o3o4x . x ♦ 16 | 24 8 | 12 0 12 0 | 2 0 6 0 | * 12N * . o4x3o3x ♦ 96 | 192 96 | 48 64 96 32 | 0 8 24 16 | * * 3N
o4x3o3x4o (N → ∞) . . . . . | 48N | 4 4 | 2 2 8 2 2 | 1 4 4 4 1 | 2 2 2 ----------+-----+---------+---------------------+-------------------+------- . x . . . | 2 | 96N * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . . x . | 2 | * 96N | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ----------+-----+---------+---------------------+-------------------+------- o4x . . . | 4 | 4 0 | 24N * * * * | 1 2 0 0 0 | 2 1 0 . x3o . . | 3 | 3 0 | * 32N * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 2 | * * 96N * * | 0 1 1 1 0 | 1 1 1 . . o3x . | 3 | 0 3 | * * * 32N * | 0 0 2 0 1 | 1 0 2 . . . x4o | 4 | 0 4 | * * * * 24N | 0 0 0 2 1 | 0 1 2 ----------+-----+---------+---------------------+-------------------+------- o4x3o . . ♦ 12 | 24 0 | 6 8 0 0 0 | 4N * * * * | 2 0 0 o4x . x . ♦ 8 | 8 4 | 2 0 4 0 0 | * 24N * * * | 1 1 0 . x3o3x . ♦ 12 | 12 12 | 0 4 6 4 0 | * * 16N * * | 1 0 1 . x . x4o ♦ 8 | 4 8 | 0 0 4 0 2 | * * * 24N * | 0 1 1 . . o3x4o ♦ 12 | 0 24 | 0 0 0 8 6 | * * * * 4N | 0 0 2 ----------+-----+---------+---------------------+-------------------+------- o4x3o3x . ♦ 96 | 192 96 | 48 64 96 32 0 | 8 24 16 0 0 | N * * o4x . x4o ♦ 16 | 16 16 | 4 0 16 0 4 | 0 4 0 4 0 | * 6N * . x3o3x4o ♦ 96 | 96 192 | 0 32 96 64 48 | 0 0 16 24 8 | * * N
x3o3x *b3x4o (N → ∞) . . . . . | 96N | 2 2 4 | 1 2 4 1 2 4 2 | 1 2 4 2 2 1 2 | 2 1 2 1 -------------+-----+--------------+-----------------------------+---------------------------+----------- x . . . . | 2 | 96N * * | 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . . x . . | 2 | * 96N * | 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x . | 2 | * * 192N | 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 -------------+-----+--------------+-----------------------------+---------------------------+----------- x3o . . . | 3 | 3 0 0 | 32N * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 2 0 | * 48N * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 2 | * * 96N * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . o3x . . | 3 | 0 3 0 | * * * 32N * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . o . *b3x . | 3 | 0 0 3 | * * * * 64N * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x x . | 4 | 0 2 2 | * * * * * 96N * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x4o | 4 | 0 0 4 | * * * * * * 48N | 0 0 0 1 0 1 1 | 0 1 1 1 -------------+-----+--------------+-----------------------------+---------------------------+----------- x3o3x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 0 | 8N * * * * * * | 2 0 0 0 x3o . *b3x . ♦ 12 | 12 0 12 | 4 0 6 0 4 0 0 | * 16N * * * * * | 1 1 0 0 x . x x . ♦ 8 | 4 4 4 | 0 2 2 0 0 2 0 | * * 48N * * * * | 1 0 1 0 x . . x4o ♦ 8 | 4 0 8 | 0 0 4 0 0 0 2 | * * * 24N * * * | 0 1 1 0 . o3x *b3x . ♦ 12 | 0 12 12 | 0 0 0 4 4 6 0 | * * * * 16N * * | 1 0 0 1 . o . *b3x4o ♦ 12 | 0 0 24 | 0 0 0 0 8 0 6 | * * * * * 8N * | 0 1 0 1 . . x x4o ♦ 8 | 0 4 8 | 0 0 0 0 0 4 2 | * * * * * * 24N | 0 0 1 1 -------------+-----+--------------+-----------------------------+---------------------------+----------- x3o3x *b3x . ♦ 96 | 96 96 96 | 32 48 48 32 32 48 0 | 8 8 24 0 8 0 0 | 2N * * * x3o . *b3x4o ♦ 96 | 96 0 192 | 32 0 96 0 64 0 48 | 0 16 0 24 0 8 0 | * N * * x . x x4o ♦ 16 | 8 8 16 | 0 4 8 0 0 8 4 | 0 0 4 2 0 0 2 | * * 12N * . o3x *b3x4o ♦ 96 | 0 96 192 | 0 0 0 32 64 96 48 | 0 0 0 0 16 8 24 | * * * N
x3o3x *b3x *b3x (N → ∞) . . . . . | 96N | 2 2 2 2 | 1 2 2 2 1 1 1 2 2 2 | 1 1 1 2 2 2 1 1 1 2 | 1 1 1 2 1 ----------------+-----+-----------------+-----------------------------------------+-----------------------------------+------------ x . . . . | 2 | 96N * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 96N * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * 96N * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * 96N | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ----------------+-----+-----------------+-----------------------------------------+-----------------------------------+------------ x3o . . . | 3 | 3 0 0 0 | 32N * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 48N * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 48N * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 48N * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 0 0 | * * * * 32N * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . o . *b3x . | 3 | 0 0 3 0 | * * * * * 32N * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . o . . *b3x | 3 | 0 0 0 3 | * * * * * * 32N * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x x . | 4 | 0 2 2 0 | * * * * * * * 48N * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 2 0 2 | * * * * * * * * 48N * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x x | 4 | 0 0 2 2 | * * * * * * * * * 48N | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ----------------+-----+-----------------+-----------------------------------------+-----------------------------------+------------ x3o3x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 0 0 | 8N * * * * * * * * * | 1 1 0 0 0 x3o . *b3x . ♦ 12 | 12 0 12 0 | 4 0 6 0 0 4 0 0 0 0 | * 8N * * * * * * * * | 1 0 1 0 0 x3o . . *b3x ♦ 12 | 12 0 0 12 | 4 0 0 6 0 0 4 0 0 0 | * * 8N * * * * * * * | 0 1 1 0 0 x . x x . ♦ 8 | 4 4 4 0 | 0 2 2 0 0 0 0 2 0 0 | * * * 24N * * * * * * | 1 0 0 0 1 x . x . x ♦ 8 | 4 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 24N * * * * * | 0 1 0 0 1 x . . x x ♦ 8 | 4 0 4 4 | 0 0 2 2 0 0 0 0 0 2 | * * * * * 24N * * * * | 0 0 1 1 0 . o3x *b3x . ♦ 12 | 0 12 12 0 | 0 0 0 0 4 4 0 6 0 0 | * * * * * * 8N * * * | 1 0 0 0 1 . o3x . *b3x ♦ 12 | 0 12 0 12 | 0 0 0 0 4 0 4 0 6 0 | * * * * * * * 8N * * | 0 1 0 0 1 . o . *b3x *b3x ♦ 12 | 0 0 12 12 | 0 0 0 0 0 4 4 0 0 6 | * * * * * * * * 8N * | 0 0 1 0 1 . . x x x ♦ 8 | 0 4 4 4 | 0 0 0 0 0 0 0 2 2 2 | * * * * * * * * * 24N | 0 0 0 1 1 ----------------+-----+-----------------+-----------------------------------------+-----------------------------------+------------ x3o3x *b3x . ♦ 96 | 96 96 96 0 | 32 48 48 0 32 32 0 48 0 0 | 8 8 0 24 0 0 8 0 0 0 | N * * * * x3o3x . *b3x ♦ 96 | 96 96 0 96 | 32 48 0 48 32 0 32 0 48 0 | 8 0 8 0 24 0 0 8 0 0 | * N * * * x3o . *b3x *b3x ♦ 96 | 96 0 96 96 | 32 0 48 48 0 32 32 0 0 48 | 0 8 8 0 0 24 0 0 8 0 | * * N * * x . x x x ♦ 16 | 8 8 8 8 | 0 4 4 4 0 0 0 4 4 4 | 0 0 0 2 2 2 0 0 0 2 | * * * 12N * . o3x *b3x *b3x ♦ 96 | 0 96 96 96 | 0 0 0 0 32 32 32 48 48 48 | 0 0 0 0 0 0 8 8 8 24 | * * * * N
© 2004-2024 | top of page |