Acronym pextut Name partially (edge-)expanded truncated tetrahedron Vertex figure [3,6,6], [3,4,r,6], [4,6,R] Dihedral angles (at margins) between {3} and {4}:   arccos(-sqrt(2/3)) = 144.735610° between {4} and {6}:   arccos(-sqrt(2/3)) = 144.735610° between {4} and {(r,R)2}:   135° between {6} and {(r,R)2}:   arccos(-1/sqrt(3)) = 125.264390° between {3} and {6}:   arccos(-1/3) = 109.471221° between {6} and {6}:   arccos(1/3) = 70.528779° Confer uniform relative: tet   related CnRFs: pabextut   patex sirco   general polytopal classes: partial Stott expansions

The vertex angles of the rhombs {(r,R)2} are r = 45° resp. R = 135°.

Incidence matrix according to Dynkin symbol

```xuxuxo oxuxux&#xt   → all but central heights = 1/sqrt(2) = 0.707107
central height = 1-1/sqrt(2) = 0.292893

o..... o.....     | 2 * * * * * | 1 2 0 0 0 0 0 0 0 0 0 0 | 2 1 0 0 0 0 0  [3,6,6]
.o.... .o....     | * 4 * * * * | 0 1 1 1 1 0 0 0 0 0 0 0 | 1 1 1 1 0 0 0  [3,4,r,6]
..o... ..o...     | * * 4 * * * | 0 0 0 1 0 1 1 0 0 0 0 0 | 1 0 0 1 1 0 0  [4,6,R]
...o.. ...o..     | * * * 4 * * | 0 0 0 0 1 0 0 1 1 0 0 0 | 0 0 1 1 0 1 0  [4,6,R]
....o. ....o.     | * * * * 4 * | 0 0 0 0 0 0 1 0 1 1 1 0 | 0 0 0 1 1 1 1  [3,4,r,6]
.....o .....o     | * * * * * 2 | 0 0 0 0 0 0 0 0 0 0 2 1 | 0 0 0 0 0 2 1  [3,6,6]
------------------+-------------+-------------------------+--------------
x..... ......     | 2 0 0 0 0 0 | 1 * * * * * * * * * * * | 2 0 0 0 0 0 0
oo.... oo....&#x  | 1 1 0 0 0 0 | * 4 * * * * * * * * * * | 1 1 0 0 0 0 0
...... .x....     | 0 2 0 0 0 0 | * * 2 * * * * * * * * * | 0 1 1 0 0 0 0
.oo... .oo...&#x  | 0 1 1 0 0 0 | * * * 4 * * * * * * * * | 1 0 0 1 0 0 0
.o.o.. .o.o..&#x  | 0 1 0 1 0 0 | * * * * 4 * * * * * * * | 0 0 1 1 0 0 0
..x... ......     | 0 0 2 0 0 0 | * * * * * 2 * * * * * * | 1 0 0 0 1 0 0
..o.o. ..o.o.&#x  | 0 0 1 0 1 0 | * * * * * * 4 * * * * * | 0 0 0 1 1 0 0
...... ...x..     | 0 0 0 2 0 0 | * * * * * * * 2 * * * * | 0 0 1 0 0 1 0
...oo. ...oo.&#x  | 0 0 0 1 1 0 | * * * * * * * * 4 * * * | 0 0 0 1 0 1 0
....x. ......     | 0 0 0 0 2 0 | * * * * * * * * * 2 * * | 0 0 0 0 1 0 1
....oo ....oo&#x  | 0 0 0 0 1 1 | * * * * * * * * * * 4 * | 0 0 0 0 0 1 1
...... .....x     | 0 0 0 0 0 2 | * * * * * * * * * * * 1 | 0 0 0 0 0 2 0
------------------+-------------+-------------------------+--------------
xux... ......&#xt | 2 2 2 0 0 0 | 1 2 0 2 0 1 0 0 0 0 0 0 | 2 * * * * * *
...... ox....&#x  | 1 2 0 0 0 0 | 0 2 1 0 0 0 0 0 0 0 0 0 | * 2 * * * * *
...... .x.x..&#x  | 0 2 0 2 0 0 | 0 0 1 0 2 0 0 1 0 0 0 0 | * * 2 * * * *
.oooo. .oooo.&#xr | 0 1 1 1 1 0 | 0 0 0 1 1 0 1 0 1 0 0 0 | * * * 4 * * *  {(r,R)2}
..x.x. ......&#x  | 0 0 2 0 2 0 | 0 0 0 0 0 1 2 0 0 1 0 0 | * * * * 2 * *
...... ...xux&#xt | 0 0 0 2 2 2 | 0 0 0 0 0 0 0 1 2 0 2 1 | * * * * * 2 *
....xo ......&#x  | 0 0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 1 2 0 | * * * * * * 2
```
```or
o..... o.....     & | 4 * * | 1 2 0 0 0 0 | 2 1 0 0  [3,6,6]
.o.... .o....     & | * 8 * | 0 1 1 1 1 0 | 1 1 1 1  [3,4,r,6]
..o... ..o...     & | * * 8 | 0 0 0 1 1 1 | 1 0 1 1  [4,6,R]
--------------------+-------+-------------+--------
x..... ......     & | 2 0 0 | 2 * * * * * | 2 0 0 0
oo.... oo....&#x  & | 1 1 0 | * 8 * * * * | 1 1 0 0
...... .x....     & | 0 2 0 | * * 4 * * * | 0 1 1 0
.oo... .oo...&#x  & | 0 1 1 | * * * 8 * * | 1 0 0 1
.o.o.. .o.o..&#x  & | 0 1 1 | * * * * 8 * | 0 0 1 1
..x... ......     & | 0 0 2 | * * * * * 4 | 1 0 1 0
--------------------+-------+-------------+--------
xux... ......&#xt & | 2 2 2 | 1 2 0 2 0 1 | 4 * * *
...... ox....&#x  & | 1 2 0 | 0 2 1 0 0 0 | * 4 * *
...... .x.x..&#x  & | 0 2 2 | 0 0 1 0 2 1 | * * 4 *
.oooo. .oooo.&#xr   | 0 2 2 | 0 0 0 2 2 0 | * * * 4  {(r,R)2}
```