Acronym | ... |
Name | partially extended hyperbolic o4o3x3x3*b tesselation |
Confer |
|
This non-compact hyperbolic tesselation uses the euclidean tiling that in the sense of an infinite horohedron as cell.
It can be derived as further partial Stott contraction of pac-x4o3x3x3*b, contracting the lacing heights of an other one of the hip classes (e.g. the ones marked "v" below).
A last contraction, e.g. of the "g" edges, then results then in o4o3x3x3*b. The other way round, it thus could be said to be its partial expansion.
pex-o4o3x3x3*b = pabac-x4o3x3x3*b (N,M → ∞) (|g|→0 & |v|→0, i.e.: |gy|→0 & |gb|→0 & |vr|→0 & |vb|→0) 3NM * * | 4 4 0 0 0 | 2 2 8 0 0 | 2 0 4 ry * 6NM * | 2 0 1 4 0 | 1 0 4 2 4 | 2 2 2 rb * * 6NM | 0 2 0 4 1 | 0 1 4 2 4 | 2 2 2 yb ------------+------------------------+-----------------------+----------- 1 1 0 | 12NM * * * * | 1 0 2 0 0 | 1 0 2 r 1 0 1 | * 12NM * * * | 0 1 2 0 0 | 1 0 2 y 0 2 0 | * * 3NM * * | 0 0 0 0 4 | 2 2 0 or 0 1 1 | * * * 24NM * | 0 0 1 1 1 | 1 1 1 b 0 0 2 | * * * * 3NM | 0 0 0 0 4 | 2 2 0 oy ------------+------------------------+-----------------------+----------- 3 3 0 | 6 0 0 0 0 | 2NM * * * * | 0 0 2 r 3 0 3 | 0 6 0 0 0 | * 2NM * * * | 0 0 2 y 1 1 1 | 1 1 0 1 0 | * * 24NM * * | 1 0 1 ryb 0 3 3 | 0 0 0 6 0 | * * * 4NM * | 0 1 1 b 0 2 2 | 0 0 1 2 1 | * * * * 12NM | 1 1 0 or-b-oy-b ------------+------------------------+-----------------------+----------- 2 4 4 | 4 4 2 8 2 | 0 0 8 0 4 | 3NM * * esquidpy 0 6 6 | 0 0 3 12 3 | 0 0 0 2 6 | * 2NM * b-hip 3M 3M 3M | 6M 6M 0 6M 0 | M M 6M M 0 | * * 4N that
© 2004-2025 | top of page |