Acronym ... Name partially extended hyperbolic o4o3x3x3*b tesselation Confer related hyperbolic polytopes: o4o3x3x3*b   pac-x4o3x3x3*b   x4o3x3x3*b   general polytopal classes: partial Stott expansions

This non-compact hyperbolic tesselation uses the euclidean tiling that in the sense of an infinite horohedron as cell.

It can be derived as further partial Stott contraction of pac-x4o3x3x3*b, contracting the lacing heights of an other one of the hip classes (e.g. the ones marked "v" below).

A last contraction, e.g. of the "g" edges, then results then in o4o3x3x3*b. The other way round, it thus could be said to be its partial expansion.

Incidence matrix

```pex-o4o3x3x3*b = pabac-x4o3x3x3*b   (N,M → ∞)
(|g|→0 & |v|→0, i.e.: |gy|→0 & |gb|→0 & |vr|→0 & |vb|→0)

3NM   *   * |    4    4   0    0   0 |   2   2    8   0    0 |   2   0  4  ry
* 6NM   * |    2    0   1    4   0 |   1   0    4   2    4 |   2   2  2  rb
*   * 6NM |    0    2   0    4   1 |   0   1    4   2    4 |   2   2  2  yb
------------+------------------------+-----------------------+-----------
1   1   0 | 12NM    *   *    *   * |   1   0    2   0    0 |   1   0  2  r
1   0   1 |    * 12NM   *    *   * |   0   1    2   0    0 |   1   0  2  y
0   2   0 |    *    * 3NM    *   * |   0   0    0   0    4 |   2   2  0  or
0   1   1 |    *    *   * 24NM   * |   0   0    1   1    1 |   1   1  1  b
0   0   2 |    *    *   *    * 3NM |   0   0    0   0    4 |   2   2  0  oy
------------+------------------------+-----------------------+-----------
3   3   0 |    6    0   0    0   0 | 2NM   *    *   *    * |   0   0  2  r
3   0   3 |    0    6   0    0   0 |   * 2NM    *   *    * |   0   0  2  y
1   1   1 |    1    1   0    1   0 |   *   * 24NM   *    * |   1   0  1  ryb
0   3   3 |    0    0   0    6   0 |   *   *    * 4NM    * |   0   1  1  b
0   2   2 |    0    0   1    2   1 |   *   *    *   * 12NM |   1   1  0  or-b-oy-b
------------+------------------------+-----------------------+-----------
2   4   4 |    4    4   2    8   2 |   0   0    8   0    4 | 3NM   *  *  esquidpy
0   6   6 |    0    0   3   12   3 |   0   0    0   2    6 |   * 2NM  *  b-hip
3M  3M  3M |   6M   6M   0   6M   0 |   M   M   6M   M    0 |   *   * 4N  that
```