Acronym pabextet
Name partially bi-expanded tetrahedron
 
Vertex figure [3,r,h,r], [3,R,H]
Dihedral angles
(at margins)
  • between {(h,H,H)2} and {3}:   arccos(-1/sqrt(3)) = 125.264390°
  • between {(r,R)2} and {3}:   arccos(-1/sqrt(3)) = 125.264390°
  • between {(h,H,H)2} and {(r,R)2}:   90°
Confer
uniform relative:
tet  
related CnRFs:
pextet   patex cube  
general polytopal classes:
partial Stott expansions  

The vertex angles of the rhombs {(r,R)2} are r = 45° resp. R = 135°. Those of the non-regular hexagons {(h,H,H)2} are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

wxoq oqwx&#xr   → height(1,2) = height(3,4) = 0
                  height(1,4) = height(2,3) = 1/sqrt(2) = 0.707107

o... o...     | 2 * * * | 2 2 0 0 0 0 | 1 2 1 0 0  [3,r,h,r]
.o.. .o..     | * 4 * * | 1 0 1 1 0 0 | 1 1 0 1 0  [3,R,H]
..o. ..o.     | * * 2 * | 0 0 0 2 2 0 | 0 2 0 1 1  [3,r,h,r]
...o ...o     | * * * 4 | 0 1 0 0 1 1 | 0 1 1 0 1  [3,R,H]
--------------+---------+-------------+----------
oo.. oo..&#x  | 1 1 0 0 | 4 * * * * * | 1 1 0 0 0
o..o o..o&#x  | 1 0 0 1 | * 4 * * * * | 0 1 1 0 0
.x.. ....     | 0 2 0 0 | * * 2 * * * | 1 0 0 1 0
.oo. .oo.&#x  | 0 1 1 0 | * * * 4 * * | 0 1 0 1 0
..oo ..oo&#x  | 0 0 1 1 | * * * * 4 * | 0 1 0 0 1
.... ...x     | 0 0 0 2 | * * * * * 2 | 0 0 1 0 1
--------------+---------+-------------+----------
wx.. oq..&#zx | 2 4 0 0 | 4 0 2 0 0 0 | 1 * * * *  {(h,H,H)2}
oooo oooo&#xr | 1 1 1 1 | 1 1 0 1 1 0 | * 4 * * *  {(r,R)2}
.... o..x&#x  | 1 0 0 2 | 0 2 0 0 0 1 | * * 2 * *
.xo. ....&#x  | 0 2 1 0 | 0 0 1 2 0 0 | * * * 2 *
..oq ..wx&#zx | 0 0 2 4 | 0 0 0 0 4 2 | * * * * 1  {(h,H,H)2}
or
o... o...     & | 4 * | 2 2 0 | 1 2 1  [3,r,h,r]
.o.. .o..     & | * 8 | 1 1 1 | 1 1 1  [3,R,H]
----------------+-----+-------+------
oo.. oo..&#x  & | 1 1 | 8 * * | 1 1 0
o..o o..o&#x  & | 1 1 | * 8 * | 0 1 1
.x.. ....     & | 0 2 | * * 4 | 1 0 1
----------------+-----+-------+------
wx.. oq..&#zx & | 2 4 | 4 0 2 | 2 * *  {(h,H,H)2}
oooo oooo&#xr   | 2 2 | 2 2 0 | * 4 *  {(r,R)2}
.... o..x&#x  & | 1 2 | 0 2 1 | * * 4

© 2004-2019
top of page