Acronym pabextet
Name partially bi-expanded tetrahedron
VRML
 
Vertex figure [3,r,h,r], [3,R,H]
Dihedral angles
(at margins)
  • between {(h,H,H)2} and {3}:   arccos[-1/sqrt(3)] = 125.264390°
  • between {(r,R)2} and {3}:   arccos[-1/sqrt(3)] = 125.264390°
  • between {(h,H,H)2} and {(r,R)2}:   90°
Face vector 12, 20, 10
Confer
uniform relative:
tet  
related CnRFs:
pextet   patex cube  
general polytopal classes:
partial Stott expansions  

The vertex angles of the rhombs {(r,R)2} are r = 45° resp. R = 135°. Those of the non-regular hexagons {(h,H,H)2} are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

(wx)(oq) (oq)(wx)&#xr   → height(1,2) = height(3,4) = 0
                          height(1,4) = height(2,3) = 1/sqrt(2) = 0.707107

(o.)(..) (o.)(..)       | 2 * * * | 2 2 0 0 0 0 | 1 2 1 0 0  [3,r,h,r]
(.o)(..) (.o)(..)       | * 4 * * | 1 0 1 1 0 0 | 1 1 0 1 0  [3,R,H]
(..)(o.) (..)(o.)       | * * 2 * | 0 0 0 2 2 0 | 0 2 0 1 1  [3,r,h,r]
(..)(.o) (..)(.o)       | * * * 4 | 0 1 0 0 1 1 | 0 1 1 0 1  [3,R,H]
------------------------+---------+-------------+----------
(oo) ..  (oo) .. &#x    | 1 1 0 0 | 4 * * * * * | 1 1 0 0 0
(o.)(.o) (o.)(.o)&#x    | 1 0 0 1 | * 4 * * * * | 0 1 1 0 0
 .x  ..   ..  ..        | 0 2 0 0 | * * 2 * * * | 1 0 0 1 0
(.o)(o.) (.o)(o.)&#x    | 0 1 1 0 | * * * 4 * * | 0 1 0 1 0
 .. (oo)  .. (oo)&#x    | 0 0 1 1 | * * * * 4 * | 0 1 0 0 1
 ..  ..   ..  .x        | 0 0 0 2 | * * * * * 2 | 0 0 1 0 1
------------------------+---------+-------------+----------
(wx) ..  (oq) .. &#(zx) | 2 4 0 0 | 4 0 2 0 0 0 | 1 * * * *  {(h,H,H)2}
(oo)(oo) (oo)(oo)&#xr   | 1 1 1 1 | 1 1 0 1 1 0 | * 4 * * *  {(r,R)2}
 ..  ..  (o.)(.x)&#x    | 1 0 0 2 | 0 2 0 0 0 1 | * * 2 * *
(.x)(o.)  ..  .. &#x    | 0 2 1 0 | 0 0 1 2 0 0 | * * * 2 *
 .. (oq)  .. (wx)&#(zx) | 0 0 2 4 | 0 0 0 0 4 2 | * * * * 1  {(h,H,H)2}
or
(o.) ..  (o.) ..        & | 4 * | 2 2 0 | 1 2 1  [3,r,h,r]
(.o) ..  (.o) ..        & | * 8 | 1 1 1 | 1 1 1  [3,R,H]
--------------------------+-----+-------+------
(oo) ..  (oo) .. &#x    & | 1 1 | 8 * * | 1 1 0
(o.)(.o) (o.)(.o)&#x    & | 1 1 | * 8 * | 0 1 1
 .x  ..   ..  ..        & | 0 2 | * * 4 | 1 0 1
--------------------------+-----+-------+------
(wx) ..  (oq) .. &#(zx) & | 2 4 | 4 0 2 | 2 * *  {(h,H,H)2}
(oo)(oo) (oo)(oo)&#xr     | 2 2 | 2 2 0 | * 4 *  {(r,R)2}
 ..  ..  (o.)(.x)&#x    & | 1 2 | 0 2 1 | * * 4

© 2004-2026
top of page