Acronym ...
Name (tes derived) truncated tridpy variant,
o2o3o symmetric co relative
Circumradius ...
Face vector 9, 18, 11
Confer
variations:
oqo3coc&#xt (c = q/2 = 1/sqrt(2))   obo3coc&#xt (c = b/2 = 1/sqrt(3))   obo3coc&#xt (c = b/2 = sqrt[(5+sqrt(5))/10])  

All a and b edges, provided in the below description, only qualify as pseudo edges wrt. the full polyhedron.


Incidence matrix according to Dynkin symbol

obo3coc&#xt   → both heights = 1/sqrt(3) = 0.577350
                b = 2qh/3 = sqrt(8/3) = 1.632993 (occurs just as long diagonal of rhomb of rad)
                c = qh/3 = sqrt(2/3) = 0.816497 (occurs as edge size)

o..3o..     & | 6 * | 2  2 | 1 2 1
.o.3.o.       | * 3 | 0  4 | 0 2 2
--------------+-----+------+------
... c..     & | 2 0 | 6  * | 1 1 0
oo.3oo.&#x  & | 1 1 | * 12 | 0 1 1
--------------+-----+------+------
o..3c..     & | 3 0 | 3  0 | 2 * *
... co.&#x  & | 2 1 | 1  2 | * 6 *
obo ...&#xt   | 2 2 | 0  4 | * * 3  {(r,R)2}

oa bo3oc&#zx   → height = 0
                 a = RR = 2/sqrt(3) = 1.154701 (occurs just as small diagonal of rhomb of rad)
                 b = rr = sqrt(8/3) = 1.632993 (occurs just as long diagonal of rhomb of rad)
                 c = sqrt(2/3) = 0.816497 (occurs as edge size)
(tegum sum of b-{3} and gyrated (a,c)-trip)

o. o.3o.     | 3 * |  4 0 | 2 2 0
.o .o3.o     | * 6 |  2 2 | 1 2 1
-------------+-----+------+------
oo oo3oo&#x  | 1 1 | 12 * | 1 1 0
.. .. .c     | 0 2 |  * 6 | 0 1 1
-------------+-----+------+------
oa bo ..&#zx | 2 2 |  4 0 | 3 * *  {(r,R)2}
.. .. oc&#x  | 1 2 |  2 1 | * 6 *
.. .o3.c     | 0 3 |  0 3 | * * 2

© 2004-2024
top of page