Acronym | ... |
Name |
hyperbolic holosnubbed disdodecahedral honeycomb, hyperbolic o5β3β5o honeycomb |
In here edges cannot be made the same size. However as a mere alternation, this structure indeed exists. Edge sizes then are |sefa( o5β )| = f = 1.618034 and |sefa( β3β )| = h = 1.732051.
Incidence matrix according to Dynkin symbol
o5β3β5o (N → ∞) both( . . . . ) | 30N | 2 8 2 | 1 4 1 6 6 | 2 2 4 ----------------+-----+--------------+-------------------+-------- sefa( o5β . . ) | 2 | 30N * * | 1 0 0 2 0 | 2 0 1 f sefa( . β3β . ) | 2 | * 120N * | 0 1 0 1 1 | 1 1 1 h sefa( . . β5o ) | 2 | * * 30N | 0 0 1 0 2 | 0 2 1 f ----------------+-----+--------------+-------------------+-------- o5β . . | 5 | 5 0 0 | 6N * * * * | 2 0 0 f5/2o both( . s3s . ) | 3 | 0 3 0 | * 40N * * * | 1 1 0 pw. coplanar as h3o,o3h-pair (or: ho3oh compound) . . β5o | 5 | 0 0 5 | * * 6N * * | 0 2 0 f5/2o sefa( o5β3β . ) | 3 | 1 2 0 | * * * 60N * | 1 0 1 of&#h sefa( . β3β5o ) | 3 | 0 2 1 | * * * * 60N | 0 1 1 of&#h ----------------+-----+--------------+-------------------+-------- o5β3β . | 60 | 60 120 0 | 12 40 0 60 0 | N * * seside variant . β3β5o | 60 | 0 120 60 | 0 40 12 0 60 | * N * seside variant sefa( o5β3β5o ) | 4 | 1 4 1 | 0 0 0 2 2 | * * 30N tet variant
or both( . . . . ) | 15N | 4 8 | 2 4 12 | 4 4 ------------------+-----+---------+------------+------ sefa( o5β . . ) & | 2 | 30N * | 1 0 2 | 2 1 f sefa( . β3β . ) | 2 | * 60N | 0 1 2 | 2 1 h ------------------+-----+---------+------------+------ o5β . . & | 5 | 5 0 | 6N * * | 2 0 f5/2o both( . s3s . ) | 3 | 0 3 | * 20N * | 2 0 pw. coplanar as h3o,o3h-pair (or: ho3oh compound) sefa( o5β3β . ) & | 3 | 1 2 | * * 60N | 1 1 of&#h ------------------+-----+---------+------------+------ o5β3β . & | 60 | 60 120 | 12 40 60 | N * seside variant sefa( o5β3β5o ) | 4 | 2 4 | 0 0 4 | * 15N tet variant starting figure: o5x3x5o
© 2004-2025 | top of page |