| Acronym | ... |
| Name | o4x3o5β (?) |
| Circumradius | ... |
This hyperbolic honeycomb is obtained by alternated holo-faceting as alternation of the coes. When starting directly from o4x3o5x mere faceting results in a non-uniform variant. Whereas, when starting from its o4x3o5v variant instead, mere faceting would result indeed in a corresponding uniform holosnub!
Incidence matrix according to Dynkin symbol
o4x3o5β (N → ∞)
both( . . . . ) | 60N | 4 2 | 2 2 1 4 | 1 2 2
----------------+-----+----------+-----------------+---------
both( . x . . ) | 2 | 120N * | 1 1 0 1 | 1 1 1
sefa( . . o5β ) | 2 | * 60N | 0 0 1 2 | 0 2 1
----------------+-----+----------+-----------------+---------
both( o4x . . ) | 4 | 4 0 | 30N * * * | 1 0 1
both( . x3o . ) | 3 | 3 0 | * 40N * * | 1 1 0
. . o5β ♦ 5 | 0 5 | * * 12N * | 0 2 0
sefa( . x3o5β ) | 6 | 3 3 | * * * 40N | 0 1 1
----------------+-----+----------+-----------------+---------
both( o4x3o . ) ♦ 12 | 24 0 | 6 8 0 0 | 5N * *
. x3o5β ♦ 60 | 60 60 | 0 20 12 20 | * 2N *
sefa( o4x3o5β ) ♦ 24 | 24 12 | 6 0 0 8 | * * 5N
starting figure: o4x3o5x
© 2004-2025 | top of page |