| Acronym | ... |
| Name | o3β3x4x (?) |
| Circumradius | ... |
| Face vector | 192, 576, 392, 80 |
No uniform realisation is possible.
Incidence matrix according to Dynkin symbol
o3β3x4x
both( . . . . ) | 192 | 1 1 2 2 | 1 1 2 2 2 2 | 1 1 2 2
----------------+-----+---------------+-------------------+-----------
both( . . x . ) | 2 | 96 * * * | 1 0 2 0 0 0 | 1 0 2 0
both( . . . x ) | 2 | * 96 * * | 1 0 0 0 2 2 | 0 1 2 2
sefa( o3β . . ) | 2 | * * 192 * | 0 1 0 1 1 0 | 1 1 0 1
sefa( . β3x . ) | 2 | * * * 192 | 0 0 1 1 0 1 | 1 0 1 1
----------------+-----+---------------+-------------------+-----------
both( . . x4x ) | 8 | 4 4 0 0 | 24 * * * * * | 0 0 2 0
o3β . . ♦ 3 | 0 0 3 0 | * 64 * * * * | 1 1 0 0
. β3x . ♦ 6 | 3 0 0 3 | * * 64 * * * | 1 0 1 0
sefa( o3β3x . ) | 4 | 0 0 2 2 | * * * 96 * * | 1 0 0 1
sefa( o3β 2 x ) | 4 | 0 2 2 0 | * * * * 96 * | 0 1 0 1
sefa( . β3x4x ) | 8 | 0 4 0 4 | * * * * * 48 | 0 0 1 1
----------------+-----+---------------+-------------------+-----------
o3β3x . ♦ 12 | 6 0 12 12 | 0 4 4 6 0 0 | 16 * * *
o3β 2 x ♦ 6 | 0 3 6 0 | 0 2 0 0 3 0 | * 32 * *
. β3x4x ♦ 48 | 24 24 0 24 | 6 0 8 0 0 6 | * * 8 *
sefa( o3β3x4x ) ♦ 16 | 0 8 8 8 | 0 0 0 4 4 2 | * * * 24
starting figure: o3x3x4x
© 2004-2025 | top of page |