Acronym | bife |
Name |
bitetradecapeton, tetradecapeton dual, 14-3-5 step prism |
Circumradius | sqrt(3/5) = 0.774597 |
Dual | fe |
Face vector | 14, 84, 280, 490, 420, 140 |
Confer |
|
External links |
This polypeton can be obtained as the convex hull of the 2 hop compound (stef). Here all the edges of the former remain as long ones, while the short ones come in as interconnections of the 2 vertex set members.
This polypeton also can be obtained as 14-3-5 step prism. Whereat an n-p-q step prism is obtained from the n-trioprism using simultanuously its k-th vertex on the first n-gon, the pk-th vertex on the next orthogonal n-gon and the qk-th vertex on the final orthogonal n-gon: i.e. using the convex hull of those n points when k=1,...,n.
Incidence matrix according to Dynkin symbol
o3o3m3m3o3o = ao3oo3oo3oo3oo3oa&#zx → height = 0, where a = sqrt(7/5) = 1.183216 o.3o.3o.3o.3o.3o. | 7 * | 6 6 0 | 15 30 15 0 | 60 60 20 | 90 60 | 60 .o3.o3.o3.o3.o3.o | * 7 | 0 6 6 | 0 15 30 15 | 20 60 60 | 60 90 | 60 ----------------------+-----+----------+---------------+-------------+---------+---- a. .. .. .. .. .. | 2 0 | 21 * * ♦ 5 5 0 0 | 20 10 0 | 30 10 | 20 oo3oo3oo3oo3oo3oo&#x | 1 1 | * 42 * ♦ 0 5 5 0 | 10 20 10 | 30 30 | 30 .. .. .. .. .. .a | 0 2 | * * 21 ♦ 0 0 5 5 | 0 10 20 | 10 30 | 20 ----------------------+-----+----------+---------------+-------------+---------+---- a.3o. .. .. .. .. | 3 0 | 3 0 0 | 35 * * * ♦ 4 0 0 | 6 0 | 4 ao .. .. .. .. ..&#x | 2 1 | 1 2 0 | * 105 * * ♦ 4 4 0 | 12 6 | 12 .. .. .. .. .. oa&#x | 1 2 | 0 2 1 | * * 105 * ♦ 0 4 4 | 6 12 | 12 .. .. .. .. .o3.a | 0 3 | 0 0 3 | * * * 35 ♦ 0 0 4 | 0 6 | 4 ----------------------+-----+----------+---------------+-------------+---------+---- ao3oo .. .. .. ..&#x | 3 1 | 3 3 0 | 1 3 0 0 | 140 * * | 3 0 | 3 ao .. .. .. .. oa&#x | 2 2 | 1 4 1 | 0 2 2 0 | * 210 * | 3 3 | 6 .. .. .. .. oo3oa&#x | 1 3 | 0 3 3 | 0 0 3 1 | * * 140 | 0 3 | 3 ----------------------+-----+----------+---------------+-------------+---------+---- ao3oo .. .. .. oa&#x | 3 2 | 3 6 1 | 1 6 3 0 | 2 3 0 | 210 * | 2 ao .. .. .. oo3oa&#x | 2 3 | 1 6 3 | 0 3 6 1 | 0 3 2 | * 210 | 2 ----------------------+-----+----------+---------------+-------------+---------+---- ao3oo .. .. oo3oa&#x | 3 3 | 3 9 3 | 1 9 9 1 | 3 9 3 | 3 3 | 140
or o.3o.3o.3o.3o.3o. & | 14 | 6 6 | 15 45 | 80 60 | 150 | 60 -----------------------+----+-------+--------+---------+-----+---- a. .. .. .. .. .. & | 2 | 42 * ♦ 5 5 | 20 10 | 40 | 20 oo3oo3oo3oo3oo3oo&#x | 2 | * 42 ♦ 0 10 | 20 20 | 60 | 30 -----------------------+----+-------+--------+---------+-----+---- a.3o. .. .. .. .. & | 3 | 3 0 | 70 * ♦ 4 0 | 6 | 4 ao .. .. .. .. ..&#x & | 3 | 1 2 | * 210 ♦ 4 4 | 18 | 12 -----------------------+----+-------+--------+---------+-----+---- ao3oo .. .. .. ..&#x & | 4 | 3 3 | 1 3 | 280 * | 3 | 3 ao .. .. .. .. oa&#x | 4 | 2 4 | 0 4 | * 210 | 6 | 6 -----------------------+----+-------+--------+---------+-----+---- ao3oo .. .. .. oa&#x & | 5 | 4 6 | 1 9 | 2 3 | 420 | 2 -----------------------+----+-------+--------+---------+-----+---- ao3oo .. .. oo3oa&#x | 6 | 6 9 | 2 18 | 6 9 | 6 | 140
© 2004-2024 | top of page |