Acronym ...
Name tetradecapeton dual
Circumradius sqrt(3/5) = 0.774597
Dual fe

This polypeton can be obtained as the convex hull of the 2 hop compound (stef). Here all the edges of the former remain as long ones, while the short ones come in as interconnections of the 2 vertex set members.


Incidence matrix according to Dynkin symbol

o3o3m3m3o3o =
ao3oo3oo3oo3oo3oa&#zx   → height = 0, where a = sqrt(7/5) = 1.183216

o.3o.3o.3o.3o.3o.     | 7 * |  6  6  0 | 15  30  15  0 |  60  60  20 |  90  60 |  60
.o3.o3.o3.o3.o3.o     | * 7 |  0  6  6 |  0  15  30 15 |  20  60  60 |  60  90 |  60
----------------------+-----+----------+---------------+-------------+---------+----
a. .. .. .. .. ..     | 2 0 | 21  *  *   5   5   0  0 |  20  10   0 |  30  10 |  20
oo3oo3oo3oo3oo3oo&#x  | 1 1 |  * 42  *   0   5   5  0 |  10  20  10 |  30  30 |  30
.. .. .. .. .. .a     | 0 2 |  *  * 21   0   0   5  5 |   0  10  20 |  10  30 |  20
----------------------+-----+----------+---------------+-------------+---------+----
a.3o. .. .. .. ..     | 3 0 |  3  0  0 | 35   *   *  *    4   0   0 |   6   0 |   4
ao .. .. .. .. ..&#x  | 2 1 |  1  2  0 |  * 105   *  *    4   4   0 |  12   6 |  12
.. .. .. .. .. oa&#x  | 1 2 |  0  2  1 |  *   * 105  *    0   4   4 |   6  12 |  12
.. .. .. .. .o3.a     | 0 3 |  0  0  3 |  *   *   * 35    0   0   4 |   0   6 |   4
----------------------+-----+----------+---------------+-------------+---------+----
ao3oo .. .. .. ..&#x  | 3 1 |  3  3  0 |  1   3   0  0 | 140   *   * |   3   0 |   3
ao .. .. .. .. oa&#x  | 2 2 |  1  4  1 |  0   2   2  0 |   * 210   * |   3   3 |   6
.. .. .. .. oo3oa&#x  | 1 3 |  0  3  3 |  0   0   3  1 |   *   * 140 |   0   3 |   3
----------------------+-----+----------+---------------+-------------+---------+----
ao3oo .. .. .. oa&#x  | 3 2 |  3  6  1 |  1   6   3  0 |   2   3   0 | 210   * |   2
ao .. .. .. oo3oa&#x  | 2 3 |  1  6  3 |  0   3   6  1 |   0   3   2 |   * 210 |   2
----------------------+-----+----------+---------------+-------------+---------+----
ao3oo .. .. oo3oa&#x  | 3 3 |  3  9  3 |  1   9   9  1 |   3   9   3 |   3   3 | 140

or
o.3o.3o.3o.3o.3o.    & | 14 |  6  6 | 15  45 |  80  60 | 150 |  60
-----------------------+----+-------+--------+---------+-----+----
a. .. .. .. .. ..    & |  2 | 42  *   5   5 |  20  10 |  40 |  20
oo3oo3oo3oo3oo3oo&#x   |  2 |  * 42   0  10 |  20  20 |  60 |  30
-----------------------+----+-------+--------+---------+-----+----
a.3o. .. .. .. ..    & |  3 |  3  0 | 70   *    4   0 |   6 |   4
ao .. .. .. .. ..&#x & |  3 |  1  2 |  * 210    4   4 |  18 |  12
-----------------------+----+-------+--------+---------+-----+----
ao3oo .. .. .. ..&#x & |  4 |  3  3 |  1   3 | 280   * |   3 |   3
ao .. .. .. .. oa&#x   |  4 |  2  4 |  0   4 |   * 210 |   6 |   6
-----------------------+----+-------+--------+---------+-----+----
ao3oo .. .. .. oa&#x & |  5 |  4  6 |  1   9 |   2   3 | 420 |   2
-----------------------+----+-------+--------+---------+-----+----
ao3oo .. .. oo3oa&#x   |  6 |  6  9 |  2  18 |   6   9 |   6 | 140

© 2004-2019
top of page